Per R Jonsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3254268/publications.pdf

Version: 2024-02-01

81900 98798 5,085 99 39 67 citations g-index h-index papers 102 102 102 6182 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Biophysical models of dispersal contribute to seascape genetic analyses. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210024.	4.0	28
2	Seascape genomics identify adaptive barriers correlated to tidal amplitude in the shore crab <i>Carcinus maenas</i> i>Nolecular Ecology, 2022, 31, 1980-1994.	3.9	5
3	Projected climate change impact on a coastal sea—As significant as all current pressures combined. Global Change Biology, 2022, 28, 5310-5319.	9.5	12
4	Combining seascape connectivity with cumulative impact assessment in support of ecosystemâ€based marine spatial planning. Journal of Applied Ecology, 2021, 58, 576-586.	4.0	10
5	Cleaning up seas using blue growth initiatives: Mussel farming for eutrophication control in the Baltic Sea. Science of the Total Environment, 2020, 709, 136144.	8.0	63
6	Monitoring biofouling as a management tool for reducing toxic antifouling practices in the Baltic Sea. Journal of Environmental Management, 2020, 264, 110447.	7.8	12
7	Integrating genetics, biophysical, and demographic insights identifies critical sites for seagrass conservation. Ecological Applications, 2020, 30, e02121.	3.8	19
8	Combining an Ecological Experiment and a Genome Scan Show Idiosyncratic Responses to Salinity Stress in Local Populations of a Seaweed. Frontiers in Marine Science, 2020, 7, .	2.5	14
9	Ecological coherence of Marine Protected Areas: New tools applied to the Baltic Sea network. Aquatic Conservation: Marine and Freshwater Ecosystems, 2020, 30, 743-760.	2.0	25
10	Spatial genetic structure in a crustacean herbivore highlights the need for local considerations in Baltic Sea biodiversity management. Evolutionary Applications, 2020, 13, 974-990.	3.1	17
11	Response to a letter to editor regarding Kotta et al. 2020: Cleaning up seas using blue growth initiatives: Mussel farming for eutrophication control in the Baltic Sea. Science of the Total Environment, 2020, 739, 138712.	8.0	2
12	Osmoregulation in Barnacles: An Evolutionary Perspective of Potential Mechanisms and Future Research Directions. Frontiers in Physiology, 2019, 10, 877.	2.8	12
13	Factors affecting formation of adventitious branches in the seaweeds Fucus vesiculosus and F. radicans. BMC Ecology, 2019, 19, 22.	3.0	5
14	Integrating experimental and distribution data to predict future species patterns. Scientific Reports, 2019, 9, 1821.	3.3	51
15	A planktonic diatom displays genetic structure over small spatial scales. Environmental Microbiology, 2018, 20, 2783-2795.	3.8	11
16	Seascape genetics and biophysical connectivity modelling support conservation of the seagrass ⟨i>Zostera marina⟨/i> in the Skagerrak–Kattegat region of the eastern North Sea. Evolutionary Applications, 2018, 11, 645-661.	3.1	40
17	High climate velocity and population fragmentation may constrain climateâ€driven range shift of the key habitat former ⟨i⟩Fucus vesiculosus⟨/i⟩. Diversity and Distributions, 2018, 24, 892-905.	4.1	41
18	The Barnacle Balanus improvisus as a Marine Model - Culturing and Gene Expression. Journal of Visualized Experiments, 2018, , .	0.3	7

#	Article	IF	CITATIONS
19	The anchoring effectâ€"long-term dormancy and genetic population structure. ISME Journal, 2018, 12, 2929-2941.	9.8	20
20	Oceanographic barriers to gene flow promote genetic subdivision of the tunicate Ciona intestinalis in a North Sea archipelago. Marine Biology, 2018, 165, 126.	1.5	13
21	Genome architecture enables local adaptation of Atlantic cod despite high connectivity. Molecular Ecology, 2017, 26, 4452-4466.	3.9	130
22	Neutral processes forming large clones during colonization of new areas. Journal of Evolutionary Biology, 2017, 30, 1544-1560.	1.7	25
23	A new flow-through bioassay for testing low-emission antifouling coatings. Biofouling, 2017, 33, 613-623.	2.2	9
24	A molecular phylogeny of the northâ€east Atlantic species of the genus <i>Idotea</i> (Isopoda) with focus on the Baltic Sea. Zoologica Scripta, 2017, 46, 188-199.	1.7	6
25	Analysis of aquaporins from the euryhaline barnacle Balanus improvisus reveals differential expression in response to changes in salinity. PLoS ONE, 2017, 12, e0181192.	2.5	27
26	The Story of a Hitchhiker: Population Genetic Patterns in the Invasive Barnacle Balanus (Amphibalanus) improvisus Darwin 1854. PLoS ONE, 2016, 11, e0147082.	2.5	20
27	Instantaneous Flow Structures and Opportunities for Larval Settlement: Barnacle Larvae Swim to Settle. PLoS ONE, 2016, 11, e0158957.	2.5	14
28	Looking beyond the mountain: dispersal barriers in a changing world. Frontiers in Ecology and the Environment, 2016, 14, 261-268.	4.0	62
29	Physical barriers and environmental gradients cause spatial and temporal genetic differentiation of an extensive algal bloom. Journal of Biogeography, 2016, 43, 1130-1142.	3.0	52
30	How to select networks of marine protected areas for multiple species with different dispersal strategies. Diversity and Distributions, 2016, 22, 161-173.	4.1	26
31	Recent decline in cod stocks in the North Sea–Skagerrak–Kattegat shifts the sources of larval supply. Fisheries Oceanography, 2016, 25, 210-228.	1.7	19
32	Natural Populations of Shipworm Larvae Are Attracted to Wood by Waterborne Chemical Cues. PLoS ONE, 2015, 10, e0124950.	2.5	13
33	Affinity states of biocides determine bioavailability and release rates in marine paints. Biofouling, 2015, 31, 201-210.	2.2	4
34	Local adaptation and oceanographic connectivity patterns explain genetic differentiation of a marine diatom across the North Sea–Baltic Sea salinity gradient. Molecular Ecology, 2015, 24, 2871-2885.	3.9	104
35	Climate Envelope Modeling and Dispersal Simulations Show Little Risk of Range Extension of the Shipworm, Teredo navalis (L.), in the Baltic Sea. PLoS ONE, 2015, 10, e0119217.	2.5	12
36	Larval behavior and dispersal mechanisms in shore crab larvae (<i>Carcinus maenas</i>): Local adaptations to different tidal environments?. Limnology and Oceanography, 2014, 59, 588-602.	3.1	33

#	Article	IF	CITATIONS
37	Parallel speciation or longâ€distance dispersal? Lessons from seaweeds (<i><scp>F</scp>ucus</i>) in the <scp>B</scp> altic <scp>S</scp> ea. Journal of Evolutionary Biology, 2013, 26, 1727-1737.	1.7	45
38	HETEROGENEOUS GENOMIC DIFFERENTIATION IN MARINE THREESPINE STICKLEBACKS: ADAPTATION AL ENVIRONMENTAL GRADIENT. Evolution; International Journal of Organic Evolution, 2013, 67, 2530-2546.	QNG AN	77
39	Seascape analysis reveals regional gene flow patterns among populations of a marine planktonic diatom. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131599.	2.6	44
40	Effects of a large northern European noâ€take zone on flatfish populations < sup > a < /sup > . Journal of Fish Biology, 2013, 83, 939-962.	1.6	28
41	Oceanographic connectivity and environmental correlates of genetic structuring in Atlantic herring in the Baltic Sea. Evolutionary Applications, 2013, 6, 549-567.	3.1	69
42	Molecular Characterization of the $\hat{l}\pm$ -Subunit of Na+/K+ ATPase from the Euryhaline Barnacle Balanus improvisus Reveals Multiple Genes and Differential Expression of Alternative Splice Variants. PLoS ONE, 2013, 8, e77069.	2.5	31
43	Disturbance–diversity models: what do they really predict and how are they tested?. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 2163-2170.	2.6	103
44	Ecology and Distribution of the Isopod Genus Idotea in the Baltic Sea: Key Species in a Changing Environment. Journal of Crustacean Biology, 2012, 32, 359-389.	0.8	52
45	Identification of subpopulations from connectivity matrices. Ecography, 2012, 35, 1004-1016.	4.5	68
46	Optimal selection of marine protected areas based on connectivity and habitat quality. Ecological Modelling, 2012, 240, 105-112.	2.5	57
47	Larval dispersal and vertical migration behaviour – a simulation study for short dispersal times. Marine Ecology, 2012, 33, 183-193.	1.1	30
48	Depth distribution of larvae critically affects their dispersal and the efficiency of marine protected areas. Marine Ecology - Progress Series, 2012, 467, 29-46.	1.9	54
49	Two Brominated Cyclic Dipeptides Released by the Coldwater Marine Sponge <i>Geodia barretti</i> Act in Synergy As Chemical Defense. Journal of Natural Products, 2011, 74, 449-454.	3.0	24
50	On the impact of dispersal asymmetry on metapopulation persistence. Journal of Theoretical Biology, 2011, 290, 37-45.	1.7	15
51	Optimal networks of nature reserves can be found through eigenvalue perturbation theory of the connectivity matrix., 2011, 21, 1861-1870.		49
52	Indiscriminate Males: Mating Behaviour of a Marine Snail Compromised by a Sexual Conflict?. PLoS ONE, 2010, 5, e12005.	2.5	27
53	Formation of harmful algal blooms cannot be explained by allelopathic interactions. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11177-11182.	7.1	120
54	Oxygen-depleted surfaces: a new antifouling technology. Biofouling, 2009, 25, 455-461.	2.2	10

#	Article	IF	CITATIONS
55	Consumer diversity indirectly changes prey nutrient content. Marine Ecology - Progress Series, 2009, 380, 33-41.	1.9	14
56	MALE DISCRIMINATION OF FEMALE MUCOUS TRAILS PERMITS ASSORTATIVE MATING IN A MARINE SNAIL SPECIES. Evolution; International Journal of Organic Evolution, 2008, 62, 3178-3184.	2.3	62
57	MULTIPLE FUNCTIONS INCREASE THE IMPORTANCE OF BIODIVERSITY FOR OVERALL ECOSYSTEM FUNCTIONING. Ecology, 2008, 89, 1223-1231.	3.2	455
58	Antifouling activity of the sponge metabolite agelasine D and synthesised analogs on <i>Balanus improvisus </i> . Biofouling, 2008, 24, 251-258.	2.2	33
59	Antifouling Activity of a Dibrominated Cyclopeptide from the Marine Sponge <i>Geodia barretti</i> Journal of Natural Products, 2008, 71, 330-333.	3.0	64
60	EFFECTS OF GRAZER RICHNESS AND COMPOSITION ON ALGAL BIOMASS IN A CLOSED AND OPEN MARINE SYSTEM. Ecology, 2007, 88, 178-187.	3.2	40
61	Algal spore settlement and germling removal as a function of flow speed. Marine Ecology - Progress Series, 2007, 344, 63-70.	1.9	19
62	INTERACTIONS BETWEEN WAVE ACTION AND GRAZING CONTROL THE DISTRIBUTION OF INTERTIDAL MACROALGAE. Ecology, 2006, 87, 1169-1178.	3.2	96
63	Brominated Cyclodipeptides from the Marine SpongeGeodiabarrettias Selective 5-HT Ligands. Journal of Natural Products, 2006, 69, 1421-1424.	3.0	49
64	Antifouling activity of synthesized peptide analogs of the sponge metabolite barettin. Peptides, 2006, 27, 2058-2064.	2.4	44
65	Making water flow: a comparison of the hydrodynamic characteristics of 12 different benthic biological flumes. Aquatic Ecology, 2006, 40, 409-438.	1.5	39
66	BARNACLE LARVAE ACTIVELY SELECT FLOW ENVIRONMENTS SUPPORTING POST-SETTLEMENT GROWTH AND SURVIVAL. Ecology, 2006, 87, 1960-1966.	3.2	59
67	An ecological perspective on the deployment and design of low-crested and other hard coastal defence structures. Coastal Engineering, 2005, 52, 1073-1087.	4.0	312
68	Species richness changes across two trophic levels simultaneously affect prey and consumer biomass. Ecology Letters, 2005, 8, 696-703.	6.4	177
69	Evidence for different pharmacological targets for imidazoline compounds inhibiting settlement of the barnacleBalanus improvisus. Journal of Experimental Zoology Part A, Comparative Experimental Biology, 2005, 303A, 551-562.	1.3	26
70	Low-crested coastal defence structures as artificial habitats for marine life: Using ecological criteria in design. Coastal Engineering, 2005, 52, 1053-1071.	4.0	300
71	A CLASSIC HYDRODYNAMIC ANALYSIS OF LARVAL SETTLEMENT. Journal of Experimental Biology, 2005, 208, 3431-3432.	1.7	4
72	INCREASING INTRASPECIFIC DIVERSITY ENHANCES SETTLING SUCCESS IN A MARINE INVERTEBRATE. Ecology, 2005, 86, 3219-3224.	3.2	58

#	Article	IF	Citations
73	Recruitment in the field ofbalanus improvisusandmytilus edulisin response to the antifouling cyclopeptides barettin and 8,9-dihydrobarettin from the marine spongegeodia barretti. Biofouling, 2004, 20, 291-297.	2.2	38
74	LINKING LARVAL SUPPLY TO RECRUITMENT: FLOW-MEDIATED CONTROL OF INITIAL ADHESION OF BARNACLE LARVAE. Ecology, 2004, 85, 2850-2859.	3.2	62
75	Surface wettability as a determinant in the settlement of the barnacle Balanus Improvisus (DARWIN). Journal of Experimental Marine Biology and Ecology, 2004, 305, 223-232.	1.5	75
76	Impact of polymer surface affinity of novel antifouling agents. Biotechnology and Bioengineering, 2004, 86, 1-8.	3.3	32
77	Roughness-dependent Removal of Settled Spores of the Green AlgaUlva(syn.Enteromorpha)Exposed to Hydrodynamic Forces from a Water Jet. Biofouling, 2004, 20, 117-122.	2.2	63
78	Antifouling Activity of Brominated Cyclopeptides from the Marine SpongeGeodia barretti. Journal of Natural Products, 2004, 67, 368-372.	3.0	104
79	Attachment to suspended particles may improve foraging and reduce predation risk for tintinnid ciliates. Limnology and Oceanography, 2004, 49, 1907-1914.	3.1	28
80	Temporal and spatial patterns in recruitment and succession of a temperate marine fouling assemblage: A comparison of static panels and boat hulls during the boating season. Biofouling, 2003, 19, 187-195.	2.2	62
81	Temporal and Spatial Patterns in Recruitment and Succession of a Temperate Marine Fouling Assemblage: a Comparison of Static Panels and Boat Hulls during the Boating Season. Biofouling, 2003, 19, 187-195.	2.2	6
82	Physical and numerical modeling of the role of hydrodynamic processes on adult-larval interactions of a suspension-feeding bivalve. Journal of Marine Research, 2002, 60, 499-516.	0.3	8
83	Redescription of Strombidium oculatum Gruber 1884 (Ciliophora, Oligotrichia). Journal of Eukaryotic Microbiology, 2002, 49, 329-337.	1.7	25
84	The adhesion of the barnacle, Balanus improvisus, to poly(dimethylsiloxane) fouling-release coatings and poly(methyl methacrylate) panels: The effect of barnacle size on strength and failure mode. Journal of Adhesion Science and Technology, 2001, 15, 1485-1502.	2.6	51
85	Trophic transfer and passive uptake of a polychlorinated biphenyl in experimental marine microbial communities. Environmental Toxicology and Chemistry, 2001, 20, 2158-2164.	4.3	21
86	Analysis of behavioural rejection of micro-textured surfaces and implications for recruitment by the barnacle Balanus improvisus. Journal of Experimental Marine Biology and Ecology, 2000, 251, 59-83.	1.5	207
87	Surface active adrenoceptor compounds prevent the settlement of cyprid larvae of <i>Balanus improvisus </i> . Biofouling, 2000, 16, 191-203.	2.2	102
88	Reduction of barnacle recruitment on microâ€textured surfaces: Analysis of effective topographic characteristics and evaluation of skin friction. Biofouling, 2000, 16, 245-261.	2.2	55
89	Microtextured surfaces: Towards macrofouling resistant coatings. Biofouling, 1999, 14, 167-178.	2.2	59
90	Appraisal of the potential for a future fishery on whelks (Buccinum undatum) in Swedish waters: CPUE and biological aspects. Fisheries Research, 1999, 42, 215-227.	1.7	32

#	Article	IF	CITATIONS
91	Effects of broodstock diets on fatty acid composition, survival and growth rates in larvae of the European flat oyster, Ostrea edulis. Aquaculture, 1997, 154, 139-153.	3.5	61
92	Swimming behaviour, patch exploitation and dispersal capacity of a marine benthic ciliate in flume flow. Journal of Experimental Marine Biology and Ecology, 1997, 215, 135-153.	1.5	32
93	Can we use laboratory-reared copepods for experiments? A comparison of feeding behaviour and reproduction between a field and a laboratory population of Acartia tonsa. ICES Journal of Marine Science, 1995, 52, 369-376.	2.5	42
94	Tidal rhythm of cyst formation in the rock pool ciliate Strombidium oculatum Gruber (Ciliophora,) Tj ETQq0 0 0 rg of encystment. Journal of Experimental Marine Biology and Ecology, 1994, 175, 77-103.	BT /Overlo 1.5	ock 10 Tf 50 (48
95	Experimental records of the effects of food patchiness and predation on egg production of Acartia tonsa. Limnology and Oceanography, 1993, 38, 280-289.	3.1	53
96	Mass mortality of the bivalve <i>Cerastoderma edule</i> on the swedish west coast caused by infestation with the digenean trematode <i>Cercaria cerastodermae</i> l. Ophelia, 1992, 36, 151-157.	0.3	64
97	Fluorescent microparticles: A new way of visualizing sedimentation and larval settlement. Limnology and Oceanography, 1991, 36, 1471-1476.	3.1	10
98	Induction of Antiâ€Phagocytic Surface Properties of <i>Staphylococcus aureus</i> from Bovine Mastitis by Growth in Milk Whey. Zoonoses and Public Health, 1991, 38, 401-410.	1.4	8
99	Is chain length in phytoplankton regulated to evade predation?. Journal of Plankton Research, 0, , fbv076.	1.8	18