
Alessandra Sutti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3254190/publications.pdf Version: 2024-02-01

ALESSANDDA SUITTI

#	Article	IF	CITATIONS
1	Bulk network polymers with dynamic B–O bonds: healable and reprocessable materials. Materials Horizons, 2020, 7, 694-714.	12.2	151
2	Improving the Tensile Properties of Wet Spun Silk Fibers Using Rapid Bayesian Algorithm. ACS Biomaterials Science and Engineering, 2020, 6, 3197-3207.	5.2	12
3	Optimizing a High-Entropy System: Software-Assisted Development of Highly Hydrophobic Surfaces using an Amphiphilic Polymer. ACS Omega, 2019, 4, 15912-15922.	3.5	9
4	The effect of metal ligands on the adsorption of metal coordination complexes on polystyrene nano-beads. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 577, 541-547.	4.7	0
5	Efficient Bayesian Function Optimization of Evolving Material Manufacturing Processes. ACS Omega, 2019, 4, 20571-20578.	3.5	0
6	Critical effects of polar fluorescent probes on the interaction of DHA with POPC supported lipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1135-1142.	2.6	8
7	Accelerating Experimental Design by Incorporating Experimenter Hunches. , 2018, , .		6
8	Norbornene chaotropic salts as low molecular mass ionic organogelators (LMIOGs). Chemical Science, 2018, 9, 5233-5241.	7.4	11
9	Metal ion type significantly affects the morphology but not the activity of lipase–metal–phosphate nanoflowers. RSC Advances, 2017, 7, 25437-25443.	3.6	28
10	Rapid Bayesian optimisation for synthesis of short polymer fiber materials. Scientific Reports, 2017, 7, 5683.	3.3	80
11	Nano-capsules of amphiphilic poly(ethylene glycol)-block-poly(bisphenol A carbonate) copolymers via thermodynamic entrapment. RSC Advances, 2016, 6, 6065-6071.	3.6	1
12	A simple and effective method to ameliorate the interfacial properties of cellulosic fibre based bio-composites using poly (ethylene glycol) based amphiphiles. European Polymer Journal, 2015, 64, 70-78.	5.4	8
13	Bending and abrasion fatigue of common suture materials used in arthroscopic and open orthopedic surgery. Journal of Orthopaedic Research, 2013, 31, 132-138.	2.3	17
14	Phase Transition of Poly(<i>N</i> -isopropylacrylamide) in Aqueous Protic Ionic Liquids: Kosmotropic versus Chaotropic Anions and Their Interaction with Water. Journal of Physical Chemistry B, 2013, 117, 8430-8435.	2.6	27
15	Temperature-Responsive Self-Assemblies of â€~Kinked' Amphiphiles. Australian Journal of Chemistry, 2013, 66, 899.	0.9	2
16	Thermo-responsive PNIPAM nanofibres crosslinked by OpePOSS. Proceedings of SPIE, 2013, , .	0.8	0
17	Synthesis and preliminary investigations into norbornane-based amphiphiles and their self-assembly. New Journal of Chemistry, 2013, 37, 1895.	2.8	9
18	A new way to nanostructure hydrogels: Electrospun Thermo-responsive Islands-in-the-Sea Nanofibres. Materials Research Society Symposia Proceedings, 2012, 1403, 143.	0.1	2

Alessandra Sutti

#	Article	IF	CITATIONS
19	Enhanced cell growth using non-woven scaffolds of multilobal fibres. Textile Reseach Journal, 2012, 82, 1371-1381.	2.2	5
20	Biofunctionalization of 3D Nylon 6,6 Scaffolds Using a Two-Step Surface Modification. ACS Applied Materials & Interfaces, 2012, 4, 2912-2919.	8.0	24
21	Thermo-responsive Hercosett/Poly(N-isopropylacrylamide) films: A new, fast, optically responsive coating. Journal of Colloid and Interface Science, 2012, 369, 231-237.	9.4	8
22	Fast responsive and morphologically robust thermo-responsive hydrogel nanofibres from poly(N-isopropylacrylamide) and POSS crosslinker. Soft Matter, 2011, 7, 4364.	2.7	74
23	Electrospinning of nanofibres with parallel line surface texture for improvement of nerve cell growth. Soft Matter, 2011, 7, 10812.	2.7	62
24	Shear-Enhanced Solution Precipitation: A Simple Process to Produce Short Polymeric Nanofibers. Journal of Nanoscience and Nanotechnology, 2011, 11, 8947-8952.	0.9	11
25	Three-Dimensional Tissue Scaffolds from Interbonded Poly(ε-Caprolactone) Fibrous Matrices with Controlled Porosity. Tissue Engineering - Part C: Methods, 2011, 17, 209-218.	2.1	25
26	Inverse opal gas sensors: Zn(II)-doped tin dioxide systems for low temperature detection of pollutant gases. Sensors and Actuators B: Chemical, 2008, 130, 567-573.	7.8	40
27	Inverse Opal Nanoassemblies: Novel Architectures for Gas Sensors The SnO2:Zn Case. Materials Research Society Symposia Proceedings, 2006, 915, 1.	0.1	Ο
28	Flux-Assisted Self-Assembly of Monodisperse Colloids. Langmuir, 2003, 19, 7944-7947.	3.5	22
29	Inverse Opal Structure of SnO2 and SnO2: Zn for Gas Sensing. , 0, , .		1