## Tae-Woong Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3254112/publications.pdf Version: 2024-02-01



TAE-MOONE KIM

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Evaluation of Machine Learning Techniques for Hydrological Drought Modeling: A Case Study of the<br>Wadi Ouahrane Basin in Algeria. Water (Switzerland), 2022, 14, 431.                                          | 1.2 | 27        |
| 2  | Spatial and Temporal Variation of Annual and Categorized Precipitation in the Han River Basin, South<br>Korea. KSCE Journal of Civil Engineering, 2022, 26, 1990-2001.                                           | 0.9 | 6         |
| 3  | Investigation of the Effects of Climate Variability, Anthropogenic Activities, and Climate Change on<br>Streamflow Using Multi-Model Ensembles. Water (Switzerland), 2022, 14, 512.                              | 1.2 | 11        |
| 4  | Predicting Hydrological Drought Alert Levels Using Supervised Machine-Learning Classifiers. KSCE<br>Journal of Civil Engineering, 2022, 26, 3019-3030.                                                           | 0.9 | 4         |
| 5  | Estimating Optimal Design Frequency and Future Hydrological Risk in Local River Basins According to RCP Scenarios. Water (Switzerland), 2022, 14, 945.                                                           | 1.2 | 2         |
| 6  | Modern Techniques to Modeling Reference Evapotranspiration in a Semiarid Area Based on ANN and<br>GEP Models. Water (Switzerland), 2022, 14, 1210.                                                               | 1.2 | 11        |
| 7  | A COMPREHENSIVE APPROACH TO RESERVOIR SEDIMENTATION ESTIMATION AND MANAGEMENT FOR LOW HEAD DAMS USING MACHINE LEARNING AND CONSERVATION MODELLING. , 2022, , .                                                   |     | 0         |
| 8  | DYNAMIC NAIVE BAYES CLASSIFIER FOR HYDROLOGICAL DROUGHT RISK ASSESSMENT. , 2022, , .                                                                                                                             |     | 1         |
| 9  | Development of a Multiple-Drought Index for Comprehensive Drought Risk Assessment Using a<br>Dynamic Naive Bayesian Classifier. Water (Switzerland), 2022, 14, 1516.                                             | 1.2 | 2         |
| 10 | Projected drought risk assessment from water balance perspectives in a changing climate.<br>International Journal of Climatology, 2021, 41, 2765-2777.                                                           | 1.5 | 10        |
| 11 | Development of a PCA-Based Vulnerability and Copula-Based Hazard Analysis for Assessing Regional<br>Drought Risk. KSCE Journal of Civil Engineering, 2021, 25, 1901-1908.                                        | 0.9 | 12        |
| 12 | Comprehensive evaluation of machine learning models for suspended sediment load inflow prediction in a reservoir. Stochastic Environmental Research and Risk Assessment, 2021, 35, 1805-1823.                    | 1.9 | 25        |
| 13 | Drought in South Asia: A Review of Drought Assessment and Prediction in South Asian Countries.<br>Atmosphere, 2021, 12, 369.                                                                                     | 1.0 | 39        |
| 14 | Evaluating the Hydrologic Risk of n-Year Floods According to RCP Scenarios. Water (Switzerland), 2021, 13, 1805.                                                                                                 | 1.2 | 4         |
| 15 | Complementary Modeling Approach for Estimating Sedimentation and Hydraulic Flushing Parameters<br>Using Artificial Neural Networks and RESCON2 Model. KSCE Journal of Civil Engineering, 2021, 25,<br>3766-3778. | 0.9 | 2         |
| 16 | Assessment of regional drought vulnerability and risk using principal component analysis and a<br>Gaussian mixture model. Natural Hazards, 2021, 109, 707-724.                                                   | 1.6 | 22        |
| 17 | Comprehensive Evaluation of Machine Learning Techniques for Hydrological Drought Forecasting.<br>Journal of Irrigation and Drainage Engineering - ASCE, 2021, 147, .                                             | 0.6 | 25        |
| 18 | Exploring the Factors Affecting Streamflow Conditions in the Han River Basin from a Regional Perspective. KSCE Journal of Civil Engineering, 2021, 25, 4931-4941.                                                | 0.9 | 11        |

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Reassessing the frequency and severity of meteorological drought considering non-stationarity and copula-based bivariate probability. Journal of Hydrology, 2021, 603, 126948.                                           | 2.3 | 26        |
| 20 | Integrated Drought Monitoring and Evaluation through Multi-Sensor Satellite-Based Statistical Simulation. Remote Sensing, 2021, 13, 272.                                                                                 | 1.8 | 10        |
| 21 | Integrated Quality Control Process for Hydrological Database: A Case Study of Daecheong Dam Basin<br>in South Korea. Water (Switzerland), 2021, 13, 2820.                                                                | 1.2 | 0         |
| 22 | Probabilistic longâ€ŧerm hydrological drought forecast using Bayesian networks and drought<br>propagation. Meteorological Applications, 2020, 27, e1827.                                                                 | 0.9 | 22        |
| 23 | Investigating effect of climate change on drought propagation from meteorological to hydrological drought using multi-model ensemble projections. Stochastic Environmental Research and Risk Assessment, 2020, 34, 7-21. | 1.9 | 81        |
| 24 | Developing Drought Planning Components to Secure Community Resilience. KSCE Journal of Civil<br>Engineering, 2020, 24, 336-343.                                                                                          | 0.9 | 1         |
| 25 | Application of the Hidden Markov Bayesian Classifier and Propagation Concept for Probabilistic<br>Assessment of Meteorological and Hydrological Droughts in South Korea. Atmosphere, 2020, 11, 1000.                     | 1.0 | 16        |
| 26 | Precipitation threshold for urban flood warning - an analysis using the satellite-based flooded area and radar-gauge composite rainfall data. Journal of Hydro-Environment Research, 2020, 32, 48-61.                    | 1.0 | 20        |
| 27 | Drought Risk Analysis, Forecasting and Assessment under Climate Change. Water (Switzerland), 2020,<br>12, 1862.                                                                                                          | 1.2 | 51        |
| 28 | Changes in extreme rainfall and its implications for design rainfall using a Bayesian quantile regression approach. Hydrology Research, 2020, 51, 699-719.                                                               | 1.1 | 11        |
| 29 | Estimating Design Floods at Ungauged Watersheds in South Korea Using Machine Learning Models.<br>Water (Switzerland), 2020, 12, 3022.                                                                                    | 1.2 | 7         |
| 30 | Investigating the impacts of climate change and human activities on hydrological drought using non-stationary approaches. Journal of Hydrology, 2020, 588, 125052.                                                       | 2.3 | 80        |
| 31 | A Pragmatic Slope-Adjusted Curve Number Model to Reduce Uncertainty in Predicting Flood Runoff<br>from Steep Watersheds. Water (Switzerland), 2020, 12, 1469.                                                            | 1.2 | 29        |
| 32 | Comprehensive Drought Assessment Using a Modified Composite Drought index: A Case Study in Hubei<br>Province, China. Water (Switzerland), 2020, 12, 462.                                                                 | 1.2 | 22        |
| 33 | Drought risk assessment for future climate projections in the Nakdong River Basin, Korea.<br>International Journal of Climatology, 2020, 40, 4528-4540.                                                                  | 1.5 | 16        |
| 34 | Exploring the influence of climate change-induced drought propagation on wetlands. Ecological<br>Engineering, 2020, 149, 105799.                                                                                         | 1.6 | 41        |
| 35 | Investigating the influence of natural events and anthropogenic activities on hydrological drought in South Korea. Terrestrial, Atmospheric and Oceanic Sciences, 2020, 31, 85-96.                                       | 0.3 | 16        |
| 36 | Hydrologic Risk Assessment of Future Extreme Drought in South Korea Using Bivariate Frequency<br>Analysis. Water (Switzerland), 2019, 11, 2052.                                                                          | 1.2 | 15        |

| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Remote Sensing-based Agricultural Drought Monitoring using Hydrometeorological Variables. KSCE<br>Journal of Civil Engineering, 2019, 23, 5244-5256.                                          | 0.9 | 19        |
| 38 | Feasible Ranges of Runoff Curve Numbers for Korean Watersheds Based on the Interior Point<br>Optimization Algorithm. KSCE Journal of Civil Engineering, 2019, 23, 5257-5265.                  | 0.9 | 14        |
| 39 | Evaluation of Future Flood Risk According to RCP Scenarios Using a Regional Flood Frequency<br>Analysis for Ungauged Watersheds. Water (Switzerland), 2019, 11, 992.                          | 1.2 | 10        |
| 40 | Probabilistic Characteristics of Drought Propagation from Meteorological to Hydrological Drought in South Korea. Water Resources Management, 2019, 33, 2439-2452.                             | 1.9 | 62        |
| 41 | Future Hydrological Drought Risk Assessment Based on Nonstationary Joint Drought Management<br>Index. Water (Switzerland), 2019, 11, 532.                                                     | 1.2 | 11        |
| 42 | Estimating RESCON model parameters for efficient sediment flushing in a dam reservoir.<br>Environmental Earth Sciences, 2019, 78, 1.                                                          | 1.3 | 4         |
| 43 | Modified analogue forecasting in the hidden Markov framework for meteorological droughts.<br>Science China Technological Sciences, 2019, 62, 151-162.                                         | 2.0 | 8         |
| 44 | Estimation of return period and its uncertainty for the recent 2013–2015 drought in the Han River<br>watershed in South Korea. Hydrology Research, 2018, 49, 1313-1329.                       | 1.1 | 3         |
| 45 | Probabilistic assessment of meteorological drought over South Korea under RCP scenarios using a hidden Markov model. KSCE Journal of Civil Engineering, 2018, 22, 365-372.                    | 0.9 | 3         |
| 46 | Assessment of regional drought risk under climate change using bivariate frequency analysis.<br>Stochastic Environmental Research and Risk Assessment, 2018, 32, 3439-3453.                   | 1.9 | 7         |
| 47 | Assessment of Probabilistic Multi-Index Drought Using a Dynamic Naive Bayesian Classifier. Water<br>Resources Management, 2018, 32, 4359-4374.                                                | 1.9 | 8         |
| 48 | Investigation of drought propagation in South Korea using drought index and conditional probability. Terrestrial, Atmospheric and Oceanic Sciences, 2018, 29, 231-241.                        | 0.3 | 27        |
| 49 | Probabilistic characteristics of lag time between meteorological and hydrological droughts using a<br>Bayesian model. Terrestrial, Atmospheric and Oceanic Sciences, 2018, 29, 709-720.       | 0.3 | 21        |
| 50 | Experimental Analysis of the Scour Pattern Modeling of Scour Depth Around Bridge Piers. Arabian<br>Journal for Science and Engineering, 2017, 42, 4111-4130.                                  | 1.7 | 17        |
| 51 | Probabilistic forecasting of drought: a hidden Markov model aggregated with the RCP 8.5 precipitation projection. Stochastic Environmental Research and Risk Assessment, 2017, 31, 1061-1076. | 1.9 | 19        |
| 52 | Evaluation of Probabilistic Storage Prediction Model (PSPM) for Optimal Reservoir Operation during<br>a Drought. Journal of Coastal Research, 2017, 79, 314-318.                              | 0.1 | 0         |
| 53 | Future Changes in Drought Characteristics under Extreme Climate Change over South Korea.<br>Advances in Meteorology, 2016, 2016, 1-19.                                                        | 0.6 | 13        |
| 54 | A Bayesian Network-Based Probabilistic Framework for Drought Forecasting and Outlook. Advances in Meteorology, 2016, 2016, 1-10.                                                              | 0.6 | 20        |

| #  | Article                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A CN-Based Ensembled Hydrological Model for Enhanced Watershed Runoff Prediction. Water<br>(Switzerland), 2016, 8, 20.                                                                               | 1.2 | 19        |
| 56 | Multivariate Drought Assessment Considering the Antecedent Drought Conditions. Water Resources Management, 2016, 30, 4221-4231.                                                                      | 1.9 | 11        |
| 57 | Investigating practical alternatives to the NRCS-CN method for direct runoff estimation using slope-adjusted curve numbers. KSCE Journal of Civil Engineering, 2016, 20, 3022-3030.                  | 0.9 | 7         |
| 58 | Improving the flow duration curve predictability at ungauged sites using a constrained hydrologic regression technique. KSCE Journal of Civil Engineering, 2016, 20, 3012-3021.                      | 0.9 | 5         |
| 59 | Constructing confidence intervals of extreme rainfall quantiles using Bayesian, bootstrap, and profile likelihood approaches. Science China Technological Sciences, 2016, 59, 573-585.               | 2.0 | 10        |
| 60 | Stability assessment of the curve number methodology used to estimate excess rainfall in forest-dominated watersheds. Arabian Journal of Geosciences, 2016, 9, 1.                                    | 0.6 | 6         |
| 61 | Comprehensive Climatological Drought Projection over South Korea under Climate Change. Procedia<br>Engineering, 2016, 154, 284-290.                                                                  | 1.2 | 4         |
| 62 | Development and evaluation of an extended inverse distance weighting method for streamflow estimation at an ungauged site. Hydrology Research, 2016, 47, 333-343.                                    | 1.1 | 11        |
| 63 | Application of copula functions to construct confidence intervals of bivariate drought frequency curve. Journal of Hydro-Environment Research, 2016, 11, 113-122.                                    | 1.0 | 17        |
| 64 | Improving the flow duration curve predictability at ungauged sites using a constrained hydrologic regression technique. KSCE Journal of Civil Engineering, 2016, 20, 3012.                           | 0.9 | 1         |
| 65 | Potential implications of pre-storm soil moisture on hydrological prediction. Journal of<br>Hydro-Environment Research, 2016, 11, 1-15.                                                              | 1.0 | 2         |
| 66 | Excess Stormwater Quantification in Ungauged Watersheds Using an Event-Based Modified NRCS<br>Model. Water Resources Management, 2016, 30, 1433-1448.                                                | 1.9 | 6         |
| 67 | Hydrological modeling to simulate streamflow under changing climate in a scarcely gauged cryosphere catchment. Environmental Earth Sciences, 2016, 75, 1.                                            | 1.3 | 33        |
| 68 | Soil moisture dynamics with hydro-climatological parameters at different soil depths. Environmental<br>Earth Sciences, 2016, 75, 1.                                                                  | 1.3 | 1         |
| 69 | Runoff Estimation Using the NRCS Slope-Adjusted Curve Number in Mountainous Watersheds. Journal of Irrigation and Drainage Engineering - ASCE, 2016, 142, .                                          | 0.6 | 24        |
| 70 | Non-stationary frequency analysis of extreme precipitation in South Korea using peaks-over-threshold<br>and annual maxima. Stochastic Environmental Research and Risk Assessment, 2016, 30, 583-606. | 1.9 | 71        |
| 71 | Influence of evapotranspiration on future drought risk using bivariate drought frequency curves.<br>KSCE Journal of Civil Engineering, 2016, 20, 2059-2069.                                          | 0.9 | 10        |
| 72 | Determination of drought events considering the possibility of relieving drought and estimation of design drought severity. Journal of Korea Water Resources Association, 2016, 49, 275-282.         | 0.3 | 3         |

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Identifying the role of typhoons as drought busters in South Korea based on hidden Markov chain<br>models. Geophysical Research Letters, 2015, 42, 2797-2804.                                          | 1.5 | 11        |
| 74 | Application of Bayesian Markov Chain Monte Carlo method with mixed gumbel distribution to estimate extreme magnitude of tsunamigenic earthquake. KSCE Journal of Civil Engineering, 2015, 19, 366-375. | 0.9 | 12        |
| 75 | Investigation of SCS-CN and its inspired modified models for runoff estimation in South Korean watersheds. Journal of Hydro-Environment Research, 2015, 9, 592-603.                                    | 1.0 | 55        |
| 76 | Improved Runoff Estimation Using Event-Based Rainfall-Runoff Models. Water Resources Management,<br>2015, 29, 1995-2010.                                                                               | 1.9 | 46        |
| 77 | Comparing Spatial Interpolation Schemes for Constructing a Flow Duration Curve in an Ungauged Basin. Water Resources Management, 2015, 29, 2249-2265.                                                  | 1.9 | 10        |
| 78 | Development of a new composite drought index for multivariate drought assessment. Journal of<br>Hydrology, 2015, 527, 30-37.                                                                           | 2.3 | 94        |
| 79 | Ensemble hydrological prediction of streamflow percentile at ungauged basins in Pakistan. Journal of<br>Hydrology, 2015, 525, 130-137.                                                                 | 2.3 | 22        |
| 80 | Evolution of a parsimonious rainfall–runoff model using soil moisture proxies. Journal of<br>Hydrology, 2015, 530, 623-633.                                                                            | 2.3 | 21        |
| 81 | Assessment of drought hazard, vulnerability, and risk: A case study forÂadministrative districts in<br>South Korea. Journal of Hydro-Environment Research, 2015, 9, 28-35.                             | 1.0 | 111       |
| 82 | Quantifying Excess Stormwater Using SCS-CN–Based Rainfall Runoff Models and Different Curve<br>Number Determination Methods. Journal of Irrigation and Drainage Engineering - ASCE, 2015, 141, .       | 0.6 | 48        |
| 83 | Evaluation of Extended Inverse Distance Weighting Method for Constructing a Flow Duration Curve at Ungauged Basin. Korean Society of Hazard Mitigation, 2015, 15, 329-337.                             | 0.1 | 5         |
| 84 | Bivariate drought frequency curves and confidence intervals: a case study using monthly rainfall generation. Stochastic Environmental Research and Risk Assessment, 2013, 27, 285-295.                 | 1.9 | 16        |
| 85 | Rainfall frequency analysis using a mixed GEV distribution: a case study for annual maximum rainfalls<br>in South Korea. Stochastic Environmental Research and Risk Assessment, 2013, 27, 1143-1153.   | 1.9 | 21        |
| 86 | Drought Risk Analysis Using Stochastic Rainfall Generation Model and Copula Functions. Journal of<br>Korea Water Resources Association, 2013, 46, 425-437.                                             | 0.3 | 13        |
| 87 | Evaluation of Influence of Climate Variation on Typhoon-Induced Hydrologic Extremes: Focused on<br>Five Major Basins in South Korea. Korean Society of Hazard Mitigation, 2013, 13, 191-200.           | 0.1 | Ο         |
| 88 | Statistical Frequency Analysis of Earthquake Data at East Sea Using Mixed Distribution Functions.<br>Korean Society of Hazard Mitigation, 2013, 13, 347-354.                                           | 0.1 | 0         |
| 89 | Spatio-temporal analysis of extreme precipitation regimes across South Korea and its application to regionalization. Journal of Hydro-Environment Research, 2012, 6, 101-110.                          | 1.0 | 22        |
| 90 | Drought frequency analysis using cluster analysis and bivariate probability distribution. Journal of<br>Hydrology, 2012, 420-421, 102-111.                                                             | 2.3 | 71        |

| #   | Article                                                                                                                                                                        | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Investigation of trend variations in annual maximum rainfalls in South Korea. KSCE Journal of Civil Engineering, 2012, 16, 215-221.                                            | 0.9 | 12        |
| 92  | Constructing rainfall depth-frequency curves considering a linear trend in rainfall observations.<br>Stochastic Environmental Research and Risk Assessment, 2012, 26, 419-427. | 1.9 | 8         |
| 93  | Assessment of Drought Risk in Korea: Focused on Data-based Drought Risk Map. Journal of the Korean<br>Society of Civil Engineers, 2012, 32, 203-211.                           | 0.1 | 14        |
| 94  | Application of spatial EOF and multivariate time series model for evaluating agricultural drought vulnerability in Korea. Advances in Water Resources, 2011, 34, 340-350.      | 1.7 | 35        |
| 95  | Comparative Study on Calculation Method for Design Flood Discharge of Dam. Journal of Korea<br>Water Resources Association, 2011, 44, 941-954.                                 | 0.3 | 2         |
| 96  | Application of bivariate frequency analysis to the derivation of rainfall–frequency curves. Stochastic<br>Environmental Research and Risk Assessment, 2010, 24, 389-397.       | 1.9 | 29        |
| 97  | Application of Regional Frequency Analysis to Non-Stationary Rainfalls in Korea. , 2010, , .                                                                                   |     | 0         |
| 98  | Development of Water Supply Plans Using System Dynamics Approach in the Han River Basin, South<br>Korea. , 2010, , .                                                           |     | 1         |
| 99  | Spatial rainfall model using a pattern classifier for estimating missing daily rainfall data. Stochastic Environmental Research and Risk Assessment, 2009, 23, 367-376.        | 1.9 | 22        |
| 100 | Analysis of water conservation and wastewater treatment options in the Geum River basin, South<br>Korea. KSCE Journal of Civil Engineering, 2009, 13, 471-477.                 | 0.9 | 3         |
| 101 | System dynamics modeling approach to water supply system. KSCE Journal of Civil Engineering, 2008, 12, 275-280.                                                                | 0.9 | 15        |
| 102 | Influence of climate variation on seasonal precipitation in the Colorado River Basin. Stochastic<br>Environmental Research and Risk Assessment, 2008, 22, 411-420.             | 1.9 | 19        |
| 103 | Stochastic multi-site generation of daily rainfall occurrence in south Florida. Stochastic<br>Environmental Research and Risk Assessment, 2008, 22, 705-717.                   | 1.9 | 15        |
| 104 | Quantification of drought using a rectangular pulses Poisson process model. Journal of Hydrology,<br>2008, 355, 34-48.                                                         | 2.3 | 20        |
| 105 | Application of Bivariate Frequency Analysis for Estimating Design Rainfalls. , 2008, , .                                                                                       |     | 1         |
| 106 | Development of a Comprehensive Flood Index through Standardizing Distributions of Runoff<br>Characteristics. Journal of Korea Water Resources Association, 2008, 41, 605-617.  | 0.3 | 3         |
| 107 | Seasonal Relationship between El Nino-Southern Oscillation and Hydrologic Variables in Korea.<br>Journal of Korea Water Resources Association, 2007, 40, 299-311.              | 0.3 | 6         |
| 108 | Spatial Characterization of Droughts in the Conchos River Basin Based on Bivariate Frequency<br>Analysis. Water International, 2006, 31, 50-58.                                | 0.4 | 12        |

| #   | Article                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Quantification of linkages between large-scale climatic patterns and precipitation in the Colorado<br>River Basin. Journal of Hydrology, 2006, 321, 173-186.             | 2.3 | 52        |
| 110 | Assessment of drought vulnerability based on the soil moisture PDF. Stochastic Environmental<br>Research and Risk Assessment, 2006, 21, 131-141.                         | 1.9 | 15        |
| 111 | Monthly precipitation forecasting using rescaling errors. KSCE Journal of Civil Engineering, 2006, 10, 137-143.                                                          | 0.9 | 4         |
| 112 | Nonparametric Approach for Bivariate Drought Characterization Using Palmer Drought Index.<br>Journal of Hydrologic Engineering - ASCE, 2006, 11, 134-143.                | 0.8 | 72        |
| 113 | Rainfall frequency analysis using a mixed Gamma distribution: evaluation of the global warming effect<br>on daily rainfall. Hydrological Processes, 2005, 19, 3851-3861. | 1.1 | 44        |
| 114 | Synthetic Generation of Hydrologic Time Series Based on Nonparametric Random Generation. Journal of Hydrologic Engineering - ASCE, 2005, 10, 395-404.                    | 0.8 | 22        |
| 115 | Nonparametric approach for estimating effects of ENSO on return periods of droughts. KSCE Journal of Civil Engineering, 2003, 7, 629-636.                                | 0.9 | 6         |
| 116 | Nonparametric Approach for Estimating Return Periods of Droughts in Arid Regions. Journal of<br>Hydrologic Engineering - ASCE, 2003, 8, 237-246.                         | 0.8 | 129       |
| 117 | Nonlinear Model for Drought Forecasting Based on a Conjunction of Wavelet Transforms and Neural<br>Networks. Journal of Hydrologic Engineering - ASCE, 2003, 8, 319-328. | 0.8 | 360       |
| 118 | Frequency and Spatial Characteristics of Droughts in the Conchos River Basin, Mexico. Water<br>International, 2002, 27, 420-430.                                         | 0.4 | 76        |