Jason A Wertheim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/325396/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Novel Soluble ACE2 Variant with Prolonged Duration of Action Neutralizes SARS-CoV-2 Infection in Human Kidney Organoids. Journal of the American Society of Nephrology: JASN, 2021, 32, 795-803.	6.1	82
2	An efficient method to generate kidney organoids at the air-liquid interface. Journal of Biological Methods, 2021, 8, e150.	0.6	4
3	Challenges, highlights, and opportunities in cellular transplantation: A white paper of the current landscape. American Journal of Transplantation, 2021, 21, 3225-3238.	4.7	5
4	Bioengineered 3D electrospun nanofibrous scaffold with human liver cells to study alcoholic liver disease in vitro. Integrative Biology (United Kingdom), 2021, 13, 184-195.	1.3	0
5	Asynchronous mixing of kidney progenitor cells potentiates nephrogenesis in organoids. Communications Biology, 2020, 3, 231.	4.4	24
6	Collagen-I and fibronectin modified three-dimensional electrospun PLGA scaffolds for long-term in vitro maintenance of functional hepatocytes. Materials Science and Engineering C, 2020, 111, 110723.	7.3	27
7	Structure-Dependent Biodistribution of Liposomal Spherical Nucleic Acids. ACS Nano, 2020, 14, 1682-1693.	14.6	43
8	Taking the Next Step: a Neural Coaptation Orthotopic Hind Limb Transplant Model to Maximize Functional Recovery in Rat. Journal of Visualized Experiments, 2020, , .	0.3	0
9	Poly(ethylene glycol)-crosslinked gelatin hydrogel substrates with conjugated bioactive peptides influence endothelial cell behavior. Biomaterials, 2019, 201, 99-112.	11.4	47
10	Dual Toll-Like Receptor Targeting Liposomal Spherical Nucleic Acids. Bioconjugate Chemistry, 2019, 30, 944-951.	3.6	18
11	Nanofibrous PLGA electrospun scaffolds modified with type I collagen influence hepatocyte function and support viability in vitro. Acta Biomaterialia, 2018, 73, 217-227.	8.3	88
12	Kidney decellularized extracellular matrix hydrogels: Rheological characterization and human glomerular endothelial cell response to encapsulation. Journal of Biomedical Materials Research - Part A, 2018, 106, 2448-2462.	4.0	44
13	Residual sodium dodecyl sulfate in decellularized muscle matrices leads to fibroblast activation in vitro and foreign body response in vivo. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1704-e1715.	2.7	23
14	Hepatic tristetraprolin promotes insulin resistance through RNA destabilization of FGF21. JCI Insight, 2018, 3, .	5.0	25
15	(Re)Building a Kidney. Journal of the American Society of Nephrology: JASN, 2017, 28, 1370-1378.	6.1	58
16	Essential design considerations for the resazurin reduction assay to noninvasively quantify cell expansion within perfused extracellular matrix scaffolds. Biomaterials, 2017, 129, 163-175.	11.4	62
17	The promise of organ and tissue preservation to transform medicine. Nature Biotechnology, 2017, 35, 530-542.	17.5	371
18	Vascular scaffolds with enhanced antioxidant activity inhibit graft calcification. Biomaterials, 2017, 144, 166-175.	11.4	41

JASON A WERTHEIM

#	Article	IF	CITATIONS
19	Functional Maturation of Induced Pluripotent Stem Cell Hepatocytes in Extracellular Matrix—A Comparative Analysis of Bioartificial Liver Microenvironments. Stem Cells Translational Medicine, 2016, 5, 1257-1267.	3.3	95
20	Tissue Engineering: Mechanocompatible Polymerâ€Extracellularâ€Matrix Composites for Vascular Tissue Engineering (Adv. Healthcare Mater. 13/2016). Advanced Healthcare Materials, 2016, 5, 1593-1593.	7.6	1
21	Novel technology for liver regeneration and replacement. Liver Transplantation, 2016, 22, 41-46.	2.4	4
22	Targeting Heparin to Collagen within Extracellular Matrix Significantly Reduces Thrombogenicity and Improves Endothelialization of Decellularized Tissues. Biomacromolecules, 2016, 17, 3940-3948.	5.4	44
23	Bioengineering Priorities on a Path to Ending Organ Shortage. Current Stem Cell Reports, 2016, 2, 118-127.	1.6	22
24	Mechanocompatible Polymerâ€Extracellularâ€Matrix Composites for Vascular Tissue Engineering. Advanced Healthcare Materials, 2016, 5, 1594-1605.	7.6	17
25	Challenging Regeneration to Transform Medicine. Stem Cells Translational Medicine, 2016, 5, 1-7.	3.3	37
26	Epithelial Cell Repopulation and Preparation of Rodent Extracellular Matrix Scaffolds for Renal Tissue Development. Journal of Visualized Experiments, 2015, , e53271.	0.3	7
27	Initiation of puberty in mice following decellularized ovary transplant. Biomaterials, 2015, 50, 20-29.	11.4	173
28	Clinical Implications of Basic Science Discoveries: Induced Pluripotent Stem Cell Therapy in Transplantation—A Potential Role for Immunologic Tolerance. American Journal of Transplantation, 2015, 15, 887-890.	4.7	5
29	Investigating the Potential of Amnion-Based Scaffolds as a Barrier Membrane for Guided Bone Regeneration. Langmuir, 2015, 31, 8642-8653.	3.5	44
30	New Tools in Experimental Cellular Therapy for the Treatment of Liver Diseases. Current Transplantation Reports, 2015, 2, 202-210.	2.0	12
31	Dual-Purpose Bioreactors to Monitor Noninvasive Physical and Biochemical Markers of Kidney and Liver Scaffold Recellularization. Tissue Engineering - Part C: Methods, 2015, 21, 1032-1043.	2.1	41
32	A polymer–extracellular matrix composite with improved thromboresistance and recellularization properties. Acta Biomaterialia, 2015, 18, 50-58.	8.3	30
33	SIRT1 Overexpression Maintains Cell Phenotype and Function of Endothelial Cells Derived from Induced Pluripotent Stem Cells. Stem Cells and Development, 2015, 24, 2740-2745.	2.1	16
34	Optimization and Critical Evaluation of Decellularization Strategies to Develop Renal Extracellular Matrix Scaffolds as Biological Templates for Organ Engineering and Transplantation. American Journal of Transplantation, 2015, 15, 64-75.	4.7	182
35	New strategies in kidney regeneration and tissue engineering. Current Opinion in Nephrology and Hypertension, 2014, 23, 399-405.	2.0	49
36	Chapter 3: Decellularized Scaffolds: Concepts, Methodologies, and Applications in Cardiac Tissue Engineering and Whole-Organ Regeneration. Frontiers in Nanobiomedical Research, 2014, , 77-124.	0.1	8

JASON A WERTHEIM

#	Article	IF	CITATIONS
37	Assessment of hepatic steatosis by transplant surgeon and expert pathologist: A prospective, double-blind evaluation of 201 donor livers. Liver Transplantation, 2013, 19, 437-449.	2.4	93
38	Bioreactor design for perfusion-based, highly vascularized organ regeneration. Current Opinion in Chemical Engineering, 2013, 2, 32-40.	7.8	34
39	The Regeneration of Organogenesis. Organogenesis, 2013, 9, 1-2.	1.2	4
40	Perspectives on whole-organ assembly: moving toward transplantation on demand. Journal of Clinical Investigation, 2012, 122, 3817-3823.	8.2	102
41	Cellular therapy and bioartificial approaches to liver replacement. Current Opinion in Organ Transplantation, 2012, 17, 235-240.	1.6	32
42	Major Challenges Limiting Liver Transplantation in the United States. American Journal of Transplantation, 2011, 11, 1773-1784.	4.7	149
43	Impact of Donor Kidney Recovery Method on Lymphatic Complications in Kidney Transplantation. Transplantation Proceedings, 2008, 40, 1054-1055.	0.6	19
44	Ascites after liver transplantation? A mystery. Liver Transplantation, 2004, 10, 654-660.	2.4	35
45	Localization of BCR-ABL to F-actin regulates cell adhesion but does not attenuate CML development. Blood, 2003, 102, 2220-2228.	1.4	51
46	Bcr-abl-positive cells secrete angiogenic factors including matrix metalloproteinases and stimulate angiogenesis in vivo in Matrigel implants. Leukemia, 2002, 16, 1160-1166.	7.2	84
47	BCR-ABL–induced adhesion defects are tyrosine kinase–independent. Blood, 2002, 99, 4122-4130.	1.4	69
48	The coiled-coil domain and Tyr177 of bcr are required to induce a murine chronic myelogenous leukemia–like disease by bcr/abl. Blood, 2002, 99, 2957-2968.	1.4	105
49	The biology of chronic myelogenous leukemia:mouse models and cell adhesion. Oncogene, 2002, 21, 8612-8628.	5.9	35
50	Polymerâ€drug conjugates: Manipulation of drug delivery kinetics. Macromolecular Symposia, 1997, 123, 225-234.	0.7	2