
Konstantinos S Andrikopoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3253528/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tuning the Spin-Crossover Behaviour in Fe(II) Polymeric Composites for Food Packaging Applications. Magnetochemistry, 2022, 8, 16.	2.4	5
2	Metal-doped CdS/MoS2 heterojunctions for photocatalytic degradation of organic pollutant. Materials Science in Semiconductor Processing, 2022, 144, 106600.	4.0	6
3	Review and New Evidence on the Molluscan Purple Pigment Used in the Early Late Bronze Age Aegean Wall Paintings. Heritage, 2021, 4, 171-187.	1.9	9
4	Patterned, organoid-based cartilaginous implants exhibit zone specific functionality forming osteochondral-like tissues in vivo. Biomaterials, 2021, 273, 120820.	11.4	42
5	Highly Efficient Simulated Solar Lightâ€Driven Photocatalytic Degradation of 4â€Nitrophenol over CdS/Carbon/MoS _x Hybrids. Chemistry - A European Journal, 2021, 27, 15806-15814.	3.3	8
6	Collagen orientation probed by polarized Raman spectra can serve as differential diagnosis indicator between different grades of meniscus degeneration. Scientific Reports, 2021, 11, 20299.	3.3	5
7	Wet-Chemistry Assembly of One-Dimensional Nanowires: Switching Characteristics of a Known Spin-Crossover Iron(II) Complex Through Raman Spectroscopy. Chemical Communications, 2021, , .	4.1	4
8	Poly(ethylene Terephthalate) Carbon-Based Nanocomposites: A Crystallization and Molecular Orientation Study. Polymers, 2020, 12, 2626.	4.5	17
9	Monitoring the spin crossover phenomenon of [Fe(2â€mpz) ₂ Ni(CN) ₄] 2D Hofmannâ€type polymer nanoparticles via temperatureâ€dependent Raman spectroscopy. Journal of Raman Spectroscopy, 2020, 51, 2171-2181.	2.5	13
10	On the Ferroelectric to Paraelectric Structural Transition of BaTiO3 Micro-/Nanoparticles and Their Epoxy Nanocomposites. Molecules, 2020, 25, 2686.	3.8	14
11	Rapid Microwaveâ€Assisted Synthesis of CdS/Graphene/MoS _{<i>x</i>} Tunable Heterojunctions and Their Application in Photocatalysis. Chemistry - A European Journal, 2020, 26, 6643-6651.	3.3	22
12	A Known Iron(II) Complex in Different Nanosized Particles: Variable-Temperature Raman Study of Its Spin-Crossover Behavior. Inorganic Chemistry, 2019, 58, 5183-5195.	4.0	9
13	Thermal dewetting tunes surface enhanced resonance Raman scattering (SERRS) performance. RSC Advances, 2018, 8, 29062-29070.	3.6	11
14	Structural and Conformational Properties of Poly(ethylene oxide)/Silica Nanocomposites: Effect of Confinement. Macromolecules, 2017, 50, 6273-6284.	4.8	32
15	Enhancing water vapor permeability in mixed matrix polypropylene membranes through carbon nanotubes dispersion. Journal of Membrane Science, 2017, 524, 576-584.	8.2	36
16	Polymer Conformation under Confinement. Polymers, 2017, 9, 73.	4.5	13
17	Manipulation of the drugâ€release behavior of poly(glycolideâ€ <i>co</i> â€trimethylene carbonate). Journal of Applied Polymer Science, 2016, 133, .	2.6	1
18	The effect of the degree of oxidation on broadband nonlinear absorption and ferromagnetic ordering in graphene oxide. Nanoscale, 2016, 8, 2908-2917.	5.6	40

#	Article	IF	CITATIONS
19	Study of upscaling possibilities for antimony sulfide solid state sensitized solar cells. Journal of Power Sources, 2015, 278, 404-410.	7.8	9
20	Water Vapor Transport Enhancement Through Isotactic Polypropylene by Incorporating Multiwalled Carbon Nanotubes. Powder Metallurgy and Metal Ceramics, 2015, 53, 634-642.	0.8	0
21	Subphthalocyanine as hole transporting material for perovskite solar cells. RSC Advances, 2015, 5, 69813-69818.	3.6	56
22	One-step electrodeposition of CdSe on nanoparticulate titania films and their use as sensitized photoanodes for photoelectrochemical hydrogen production. Catalysis Today, 2015, 252, 157-161.	4.4	15
23	Evaluation of multi-walled carbon nanotube concentrations in polymer nanocomposites by Raman spectroscopy. Carbon, 2014, 76, 301-309.	10.3	35
24	Effect of in vitro aging on the flexural strength and probability to fracture of Y-TZP zirconia ceramics for all-ceramic restorations. Dental Materials, 2014, 30, e306-e316.	3.5	64
25	The Effect of Thermal Reduction on the Water Vapor Permeation in Graphene Oxide Membranes. Advanced Materials Interfaces, 2014, 1, 1400250.	3.7	47
26	Composite ZnSe-CdSe Quantum Dot Sensitizers of Solid-State Solar Cells and the Beneficial Effect of Added Na ₂ S. Journal of Physical Chemistry C, 2014, 118, 16547-16551.	3.1	24
27	Elemental sulfur under high hydrostatic pressure. An up-to-date Raman study. High Pressure Research, 2013, 33, 134-140.	1.2	10
28	The glassy and supercooled state of elemental sulfur: Vibrational modes, structure metastability, and polymer content. Journal of Chemical Physics, 2013, 139, 124501.	3.0	30
29	Origin of photoinduced defects in glassy As ₂ S ₃ under band gap illumination studied by Raman scattering: A revisory approach. Physica Status Solidi (B): Basic Research, 2012, 249, 2005-2012.	1.5	22
30	Confinement effects on liquid–liquid transitions: pore size dependence of sulfur's living polymerization. Soft Matter, 2011, 7, 3404.	2.7	15
31	Crystallinity and Chain Conformation in PEO/Layered Silicate Nanocomposites. Macromolecules, 2011, 44, 9710-9722.	4.8	113
32	Brillouin light scattering study of polymeric glassy sulfur. Journal of Non-Crystalline Solids, 2011, 357, 563-566.	3.1	7
33	Nanoindentation and Raman studies of phase-separated Ag-As-S glasses. Applied Physics Letters, 2011, 99, 171911.	3.3	9
34	Nonergodicity Factor, Fragility, and Elastic Properties of Polymeric Glassy Sulfur. Journal of Physical Chemistry B, 2011, 115, 14052-14063.	2.6	25
35	High pressure transition in amorphous As2S3 studied by EXAFS. Journal of Chemical Physics, 2009, 131, 224502.	3.0	18
36	Evaluating a Cumaean Sibyl: Domenichino or later? A multi analytical approach. Analytica Chimica Acta, 2008, 611, 239-249.	5.4	11

#	Article	IF	CITATIONS
37	Analytical study into El Greco's baptism of Christ: clues to the genius of his palette. Applied Physics A: Materials Science and Processing, 2008, 90, 565-575.	2.3	21
38	From Byzantine to post-Byzantine art: the painting technique of St Stephen's wall paintings at Meteora, Greece. Journal of Archaeological Science, 2008, 35, 2474-2485.	2.4	44
39	Micro-Raman and X-ray fluorescence spectroscopy data fusion for the classification of ochre pigments. Talanta, 2008, 75, 926-936.	5.5	45
40	lssues relating to the common origin of two Byzantine miniatures:in situ examination with Raman spectroscopy and optical microscopy. Journal of Raman Spectroscopy, 2007, 38, 332-343.	2.5	12
41	Raman study of the high-pressure hydrogenated single-wall carbon nanotubes: In search of chemically bonded and adsorbed molecular hydrogen. Chemical Physics Letters, 2007, 433, 335-339.	2.6	23
42	Raman scattering study of GeTe and Ge2Sb2Te5 phase-change materials. Journal of Physics and Chemistry of Solids, 2007, 68, 1074-1078.	4.0	164
43	Comparative high pressure Raman study of individual and bundled single-wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2007, 244, 100-104.	1.5	9
44	Second-order Raman study of double-wall carbon nanotubes under high pressure. Physica Status Solidi (B): Basic Research, 2007, 244, 116-120.	1.5	7
45	High pressure Raman study of the secondâ€order vibrational modes of single―and doubleâ€walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2007, 244, 4069-4073.	1.5	8
46	Pressure dependence of the Boson peak in glassy As2S3 studied by Raman scattering. Journal of Non-Crystalline Solids, 2006, 352, 4594-4600.	3.1	47
47	On the analysis of the vibrational Boson peak and low-energy excitations in glasses. Journal of Non-Crystalline Solids, 2006, 352, 4541-4551.	3.1	50
48	Influence of pressure on the photopolymerization rate of the linear orthorhombic polymer of C60. Chemical Physics Letters, 2006, 428, 298-302.	2.6	8
49	Pressure Raman study of vibrational modes of glassy As2X3(X: O, S). High Pressure Research, 2006, 26, 401-406.	1.2	3
50	On the extent of polymerization of liquid sulfur at very high temperatures. Journal of Chemical Physics, 2006, 124, 146101.	3.0	5
51	Raman scattering study of the a-GeTe structure and possible mechanism for the amorphous to crystal transition. Journal of Physics Condensed Matter, 2006, 18, 965-979.	1.8	186
52	Why Phase-Change Media Are Fast and Stable: A New Approach to an Old Problem. Japanese Journal of Applied Physics, 2005, 44, 3345-3349.	1.5	55
53	Crystallization-induced short-range order changes in amorphous GeTe. Journal of Physics Condensed Matter, 2004, 16, S5103-S5108.	1.8	58
54	Fuzzy Logic for Identifying Pigments Studied by Raman Spectroscopy. Applied Spectroscopy, 2004, 58, 848-854.	2.2	11

#	Article	IF	CITATIONS
55	Raman scattering study on structural and dynamical features of noncrystalline selenium. Journal of Chemical Physics, 2004, 121, 4747-4758.	3.0	149
56	"Rounding―of the sulfur living polymerization transition under spatial confinement. Journal of Chemical Physics, 2003, 119, 7543-7553.	3.0	19
57	Probing the sulfur polymerization transitionin situwith Raman spectroscopy. Journal of Chemical Physics, 2003, 118, 8460-8467.	3.0	69
58	Fast Monitoring of the Molecular Orientation in Drawn Polymers Using Micro-Raman Spectroscopy. Applied Spectroscopy, 2002, 56, 528-535.	2.2	18
59	Polarized Resonance Raman and FTIR Reflectance Spectroscopic Investigation of the Molecular Orientation in Industrial Poly(vinyl chloride) Specimens. Macromolecules, 2000, 33, 5613-5623.	4.8	49
60	Molecular Orientation of Blue Luminescent Rigidâ ´ Flexible Polymers. Macromolecules, 1999, 32, 8848-8856.	4.8	14
61	Molecular Orientation of Hairy-Rod Polyesters:Â Effects of Side Chain Length. Macromolecules, 1998, 31, 5465-5473.	4.8	16