Masaaki Hori

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3253393/masaaki-hori-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

192
papers

3,359
citations

32
h-index
g-index

210
ext. papers

4,325
ext. citations

4.1
solutions

5.05
L-index

#	Paper	IF	Citations
192	Analysis of synthetic magnetic resonance images by multi-channel segmentation increases accuracy of volumetry in the putamen and decreases mis-segmentation in the dural sinuses <i>Acta Radiologica</i> , 2022 , 2841851221089835	2	
191	Microstructural white matter abnormalities in multiple sclerosis and neuromyelitis optica spectrum disorders: Evaluation by advanced diffusion imaging <i>Journal of the Neurological Sciences</i> , 2022 , 436, 120205	3.2	0
190	White matter and nigral alterations in multiple system atrophy-parkinsonian type. <i>Npj Parkinsono</i> s <i>Disease</i> , 2021 , 7, 96	9.7	O
189	Age-Related Changes in Relaxation Times, Proton Density, Myelin, and Tissue Volumes in Adult Brain Analyzed by 2-Dimensional Quantitative Synthetic Magnetic Resonance Imaging. <i>Investigative Radiology</i> , 2021 , 56, 163-172	10.1	6
188	Effect of hybrid of compressed sensing and parallel imaging on the quantitative values measured by 3D quantitative synthetic MRI: A phantom study. <i>Magnetic Resonance Imaging</i> , 2021 , 78, 90-97	3.3	1
187	Differentiation between multiple sclerosis and neuromyelitis optica spectrum disorders by multiparametric quantitative MRI using convolutional neural network. <i>Journal of Clinical Neuroscience</i> , 2021 , 87, 55-58	2.2	1
186	Technical Basics of Diffusion-Weighted Imaging. <i>Magnetic Resonance Imaging Clinics of North America</i> , 2021 , 29, 129-136	1.6	1
185	Influence of Mild White Matter Lesions on Voxel-based Morphometry. <i>Magnetic Resonance in Medical Sciences</i> , 2021 , 20, 40-46	2.9	1
184	Repeatability and reproducibility of human brain morphometry using three-dimensional magnetic resonance fingerprinting. <i>Human Brain Mapping</i> , 2021 , 42, 275-285	5.9	3
183	A prospective randomized study comparing effects of empagliflozin to sitagliptin on cardiac fat accumulation, cardiac function, and cardiac metabolism in patients with early-stage type 2 diabetes: the ASSET study. <i>Cardiovascular Diabetology</i> , 2021 , 20, 32	8.7	12
182	Low-Field Magnetic Resonance Imaging: Its History and Renaissance. <i>Investigative Radiology</i> , 2021 , 56, 669-679	10.1	6
181	Multiple sclerosis plaques may undergo continuous myelin degradation: a cross-sectional study with myelin and axon-related quantitative magnetic resonance imaging metrics. <i>Neuroradiology</i> , 2021 , 1	3.2	0
180	Open-access quantitative MRI data of the spinal cord and reproducibility across participants, sites and manufacturers. <i>Scientific Data</i> , 2021 , 8, 219	8.2	6
179	Diffusion MRI Captures White Matter Microstructure Alterations in PRKN Disease. <i>Journal of Parkinson</i> Disease, 2021 , 11, 1221-1235	5.3	1
178	Generic acquisition protocol for quantitative MRI of the spinal cord. <i>Nature Protocols</i> , 2021 , 16, 4611-4	632 8.8	11
177	White matter alterations in Parkinson@ disease with levodopa-induced dyskinesia. <i>Parkinsonism and Related Disorders</i> , 2021 , 90, 8-14	3.6	2
176	The metabolic parameters based on volume in PET/CT are associated with clinicopathological N stage of colorectal cancer and can predict prognosis. <i>EJNMMI Research</i> , 2021 , 11, 87	3.6	1

(2020-2021)

	6.7	2
89-2105 Images From 3D Quantitative Synthetic MRI Without	11.2	17
,,	10.1	19
	3.3	6
fusion MRI study. <i>Journal of Neuroimaging</i> , 2020 , 30, 828-	838	3
	4.4	8
	2.2	
	7.9	10
	0.1	
	2.9	2
of Factors. American Journal of Neuroradiology, 2020 ,	4.4	
	0.9	
	2.2	1
ondylotic myelopathy and assess postoperative	4	4
	3.2	3
	1.7	2
f neurite orientation dispersion and density imaging	3.2	10
	ted axonal degeneration in Parkinson@ disease. 6-949 obability data obtained using statistical parametric asts of analyzed images. Journal of Clinical netic Resonance Imaging: A Correlation Study ients with Multiple Sclerosis. Cells, 2020, 9, p-term Intensive Training in Japanese World-class, 21-28 for Generating a Myelin Volume Index Map from Index Resonance in Medical Sciences, 2020, 19, 324-332 of Factors. American Journal of Neuroradiology, 2020, diptin on Ectopic Fat Accumulation and 20, 69, 29-OR live study between synthetic MRI and FSL-brain Index In	attra-axial brain tumors by time-dependent diffusion attra-axial brain tumors by texture attraction attra-axial brain tumors by texture attraction attra-axial brain tumors by texture attraction attraction attraction dispersion and density imaging

157	Quantitative analysis of ovarian cysts and tumors by using T2 star mapping. <i>Journal of Obstetrics and Gynaecology Research</i> , 2020 , 46, 140-146	1.9	
156	Brain White-Matter Degeneration Due to Aging and Parkinson Disease as Revealed by Double Diffusion Encoding. <i>Frontiers in Neuroscience</i> , 2020 , 14, 584510	5.1	10
155	NODDI in clinical research. <i>Journal of Neuroscience Methods</i> , 2020 , 346, 108908	3	23
154	Regional brain gray matter volume in world-class artistic gymnasts. <i>Journal of Physiological Sciences</i> , 2020 , 70, 43	2.3	3
153	Myelin and Axonal Damage in Normal-Appearing White Matter in Patients with Moyamoya Disease. <i>American Journal of Neuroradiology</i> , 2020 , 41, 1618-1624	4.4	2
152	Differentiation between glioblastoma and solitary brain metastasis using neurite orientation dispersion and density imaging. <i>Journal of Neuroradiology</i> , 2020 , 47, 197-202	3.1	17
151	Ventricular volumetry and free-water corrected diffusion tensor imaging of the anterior thalamic radiation in idiopathic normal pressure hydrocephalus. <i>Journal of Neuroradiology</i> , 2020 , 47, 312-317	3.1	6
150	Signal Intensity within Cerebral Venous Sinuses on Synthetic MRI. <i>Magnetic Resonance in Medical Sciences</i> , 2020 , 19, 56-63	2.9	4
149	Three-dimensional high-resolution simultaneous quantitative mapping of the whole brain with 3D-QALAS: An accuracy and repeatability study. <i>Magnetic Resonance Imaging</i> , 2019 , 63, 235-243	3.3	21
148	White Matter Abnormalities in Multiple Sclerosis Evaluated by Quantitative Synthetic MRI, Diffusion Tensor Imaging, and Neurite Orientation Dispersion and Density Imaging. <i>American Journal of Neuroradiology</i> , 2019 , 40, 1642-1648	4.4	16
147	MR g-ratio-weighted connectome analysis in patients with multiple sclerosis. <i>Scientific Reports</i> , 2019 , 9, 13522	4.9	15
146	An Essential Role of the Intraparietal Sulcus in Response Inhibition Predicted by Parcellation-Based Network. <i>Journal of Neuroscience</i> , 2019 , 39, 2509-2521	6.6	29
145	Improving the Quality of Synthetic FLAIR Images with Deep Learning Using a Conditional Generative Adversarial Network for Pixel-by-Pixel Image Translation. <i>American Journal of Neuroradiology</i> , 2019 , 40, 224-230	4.4	33
144	Unraveling Specific Brain Microstructural Damage in Moyamoya Disease Using Diffusion Magnetic Resonance Imaging and Positron Emission Tomography. <i>Journal of Stroke and Cerebrovascular Diseases</i> , 2019 , 28, 1113-1125	2.8	6
143	Spatial distribution of multiple sclerosis lesions in the cervical spinal cord. <i>Brain</i> , 2019 , 142, 633-646	11.2	47
142	Longitudinal changes in striatum and sub-threshold positive symptoms in individuals with an Q t risk mental stateQARMS). <i>Psychiatry Research - Neuroimaging</i> , 2019 , 285, 25-30	2.9	7
141	Brain tissue and myelin volumetric analysis in multiple sclerosis at 3T MRI with various in-plane resolutions using synthetic MRI. <i>Neuroradiology</i> , 2019 , 61, 1219-1227	3.2	13
140	Intravoxel incoherent motion perfusion in patients with Moyamoya disease: comparison with O-gas positron emission tomography. <i>Acta Radiologica Open</i> , 2019 , 8, 2058460119846587	1.2	2

139	Comparison of magnetization transfer contrast of conventional and simultaneous multislice turbo spin echo acquisitions focusing on excitation time interval. <i>Japanese Journal of Radiology</i> , 2019 , 37, 579.	- 5 89	1	
138	White matter alterations in adult with autism spectrum disorder evaluated using diffusion kurtosis imaging. <i>Neuroradiology</i> , 2019 , 61, 1343-1353	3.2	6	
137	Gray Matter Alterations in Early and Late Relapsing-Remitting Multiple Sclerosis Evaluated with Synthetic Quantitative Magnetic Resonance Imaging. <i>Scientific Reports</i> , 2019 , 9, 8147	4.9	8	
136	3D quantitative synthetic MRI-derived cortical thickness and subcortical brain volumes: Scan-rescan repeatability and comparison with conventional T-weighted images. <i>Journal of Magnetic Resonance Imaging</i> , 2019 , 50, 1834-1842	5.6	23	
135	Large hospital variation in the utilization of Post-procedural CT to detect pulmonary embolism/Deep Vein Thrombosis in Patients Undergoing Total Knee or Hip Replacement Surgery: Japanese Nationwide Diagnosis Procedure Combination Database Study. <i>British Journal of</i>	3.4	1	
134	Radiology, 2019 , 92, 20180825 Review of synthetic MRI in pediatric brains: Basic principle of MR quantification, its features, clinical applications, and limitations. <i>Journal of Neuroradiology</i> , 2019 , 46, 268-275	3.1	15	
133	Estimation of Gadolinium-based Contrast Agent Concentration Using Quantitative Synthetic MRI and Its Application to Brain Metastases: A Feasibility Study. <i>Magnetic Resonance in Medical Sciences</i> , 2019 , 18, 260-264	2.9	5	
132	A Comparison of Techniques for Correcting Eddy-current and Motion-induced Distortions in Diffusion-weighted Echo-planar Images. <i>Magnetic Resonance in Medical Sciences</i> , 2019 , 18, 272-275	2.9	O	
131	Free-Water Imaging in White and Gray Matter in Parkinson@ Disease. Cells, 2019, 8,	7.9	19	
130	Convolutional neural network-based segmentation can help in assessing the substantia nigra in neuromelanin MRI. <i>Neuroradiology</i> , 2019 , 61, 1387-1395	3.2	15	
129	Aberrant myelination in patients with Sturge-Weber syndrome analyzed using synthetic quantitative magnetic resonance imaging. <i>Neuroradiology</i> , 2019 , 61, 1055-1066	3.2	13	
128	MRI-based visualization of rTMS-induced cortical plasticity in the primary motor cortex. <i>PLoS ONE</i> , 2019 , 14, e0224175	3.7	6	
127	Synthetic MR Imaging using MP2RAGE and Multi-echo Sequence: The Effect of Clinical Setting on the Quantification of Phantom Characteristics. <i>Japanese Journal of Magnetic Resonance in Medicine</i> , 2019 , 39, 6-14	0		
126	Bayesian Estimation of CBF Measured by DSC-MRI in Patients with Moyamoya Disease: Comparison with O-Gas PET and Singular Value Decomposition. <i>American Journal of Neuroradiology</i> , 2019 , 40, 1894-	1 9 60	4	
125	Linearity, Bias, Intrascanner Repeatability, and Interscanner Reproducibility of Quantitative Multidynamic Multiecho Sequence for Rapid Simultaneous Relaxometry at 3 T: A Validation Study With a Standardized Phantom and Healthy Controls. <i>Investigative Radiology</i> , 2019 , 54, 39-47	10.1	46	
124	Choroid plexus cysts analyzed using diffusion-weighted imaging with short diffusion-time. <i>Magnetic Resonance Imaging</i> , 2019 , 57, 323-327	3.3	10	
123	Effect of Gadolinium on the Estimation of Myelin and Brain Tissue Volumes Based on Quantitative Synthetic MRI. <i>American Journal of Neuroradiology</i> , 2019 , 40, 231-237	4.4	7	
122	Regression of White Matter Hyperintensity after Indirect Bypass Surgery in a Patient with Moyamoya Disease. <i>Magnetic Resonance in Medical Sciences</i> , 2019 , 18, 247-248	2.9	6	

121	Differentiating Alzheimer@ Disease from Dementia with Lewy Bodies Using a Deep Learning Technique Based on Structural Brain Connectivity. <i>Magnetic Resonance in Medical Sciences</i> , 2019 , 18, 219-224	2.9	12
120	Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks. <i>NeuroImage</i> , 2019 , 184, 901-915	7.9	77
119	Automated brain tissue and myelin volumetry based on quantitative MR imaging with various in-plane resolutions. <i>Journal of Neuroradiology</i> , 2018 , 45, 164-168	3.1	23
118	Synthetic MRI of the knee: new perspectives in musculoskeletal imaging and possible applications for the assessment of bone marrow disorders. <i>British Journal of Radiology</i> , 2018 , 91, 20170886	3.4	1
117	Changes in the ADC of diffusion-weighted MRI with the oscillating gradient spin-echo (OGSE) sequence due to differences in substrate viscosities. <i>Japanese Journal of Radiology</i> , 2018 , 36, 415-420	2.9	7
116	Application of Quantitative Microstructural MR Imaging with Atlas-based Analysis for the Spinal Cord in Cervical Spondylotic Myelopathy. <i>Scientific Reports</i> , 2018 , 8, 5213	4.9	15
115	Neurite orientation dispersion and density imaging of the nigrostriatal pathway in ParkinsonQ disease: Retrograde degeneration observed by tract-profile analysis. <i>Parkinsonism and Related Disorders</i> , 2018 , 51, 55-60	3.6	26
114	Depressive symptoms in Parkinson@ disease are related to decreased left hippocampal volume: correlation with the 15-item shortened version of the Geriatric Depression Scale. <i>Acta Radiologica</i> , 2018 , 59, 341-345	2	10
113	Application of neurite orientation dispersion and density imaging or diffusion tensor imaging to quantify the severity of cervical spondylotic myelopathy and to assess postoperative neurologic recovery. <i>Spine Journal</i> , 2018 , 18, 268-275	4	14
112	Noninvasive Computed Tomography-Derived Fractional Flow Reserve Based on Structural and Fluid Analysis: Reproducibility of On-site Determination by Unexperienced Observers. <i>Journal of Computer Assisted Tomography</i> , 2018 , 42, 256-262	2.2	12
111	The Advantage of Synthetic MRI for the Visualization of Anterior Temporal Pole Lesions on Double Inversion Recovery (DIR), Phase-sensitive Inversion Recovery (PSIR), and Myelin Images in a Patient with CADASIL. <i>Magnetic Resonance in Medical Sciences</i> , 2018 , 17, 275-276	2.9	21
110	Myelin Measurement: Comparison Between Simultaneous Tissue Relaxometry, Magnetization Transfer Saturation Index, and Tw/Tw Ratio Methods. <i>Scientific Reports</i> , 2018 , 8, 10554	4.9	55
109	Reduced visualization of cerebral infarction on diffusion-weighted images with short diffusion times. <i>Neuroradiology</i> , 2018 , 60, 979-982	3.2	11
108	Limitation of neurite orientation dispersion and density imaging for the detection of focal cortical dysplasia with a "transmantle sign". <i>Physica Medica</i> , 2018 , 52, 183-184	2.7	2
107	Imaging Differences between Neuromyelitis Optica Spectrum Disorders and Multiple Sclerosis: A Multi-Institutional Study in Japan. <i>American Journal of Neuroradiology</i> , 2018 , 39, 1239-1247	4.4	12
106	Symptom recovery and relationship to structure of corpus callosum in individuals with an Q t risk mental stateQ <i>Psychiatry Research - Neuroimaging</i> , 2018 , 272, 1-6	2.9	4
105	Slice-accelerated gradient-echo echo planar imaging dynamic susceptibility contrast-enhanced MRI with blipped CAIPI: effect of increasing temporal resolution. <i>Japanese Journal of Radiology</i> , 2018 , 36, 40-50	2.9	2
104	Radiologist involvement is associated with reduced use of MRI in the acute period of low back pain in a non-elderly population. <i>European Radiology</i> , 2018 , 28, 1600-1608	8	2

103	Connectome analysis with diffusion MRI in idiopathic Parkinson@disease: Evaluation using multi-shell, multi-tissue, constrained spherical deconvolution. <i>NeuroImage: Clinical</i> , 2018 , 17, 518-529	5.3	33
102	Spatial Restriction within Intracranial Epidermoid Cysts Observed Using Short Diffusion-time Diffusion-weighted Imaging. <i>Magnetic Resonance in Medical Sciences</i> , 2018 , 17, 269-272	2.9	16
101	Combining Segmented Grey and White Matter Images Improves Voxel-based Morphometry for the Case of Dilated Lateral Ventricles. <i>Magnetic Resonance in Medical Sciences</i> , 2018 , 17, 293-300	2.9	9
100	Areal Parcellation and Nucleus-Level Analysis of Human Hypothalamus Using High-Resolution fMRI. <i>Juntendo Medical Journal</i> , 2018 , 64, 72-73	0.1	
99	Microstructural Damage in Normal-Appearing Brain Parenchyma and Neurocognitive Dysfunction in Adult Moyamoya Disease. <i>Stroke</i> , 2018 , 49, 2504-2507	6.7	15
98	The Relationship between Neurite Density Measured with Confocal Microscopy in a Cleared Mouse Brain and Metrics Obtained from Diffusion Tensor and Diffusion Kurtosis Imaging. <i>Magnetic Resonance in Medical Sciences</i> , 2018 , 17, 138-144	2.9	9
97	Diffusional kurtosis imaging and white matter microstructure modeling in a clinical study of major depressive disorder. <i>NMR in Biomedicine</i> , 2018 , 31, e3938	4.4	12
96	Neuromelanin imaging and midbrain volumetry in progressive supranuclear palsy and Parkinson@ disease. <i>Movement Disorders</i> , 2018 , 33, 1488-1492	7	23
95	Striatal subdivisions that coherently interact with multiple cerebrocortical networks. <i>Human Brain Mapping</i> , 2018 , 39, 4349-4359	5.9	13
94	Alterations of the optic pathway between unilateral and bilateral optic nerve damage in multiple sclerosis as revealed by the combined use of advanced diffusion kurtosis imaging and visual evoked potentials. <i>Magnetic Resonance Imaging</i> , 2017 , 39, 24-30	3.3	13
93	Longitudinal study examining abnormal white matter integrity using a tract-specific analysis in individuals with a high risk for psychosis. <i>Psychiatry and Clinical Neurosciences</i> , 2017 , 71, 530-541	6.2	17
92	Neuromelanin MRI is useful for monitoring motor complications in Parkinson@and PARK2 disease. <i>Journal of Neural Transmission</i> , 2017 , 124, 407-415	4.3	21
91	Gray Matter Abnormalities in Idiopathic Parkinson Disease: Evaluation by Diffusional Kurtosis Imaging and Neurite Orientation Dispersion and Density Imaging. <i>Human Brain Mapping</i> , 2017 , 38, 3704	- 37 22	53
90	Non-Contrast-Enhanced Silent Scan MR Angiography of Intracranial Anterior Circulation Aneurysms Treated with a Low-Profile Visualized Intraluminal Support Device. <i>American Journal of</i> <i>Neuroradiology</i> , 2017 , 38, 1610-1616	4.4	26
89	Diffusion imaging of reversible and irreversible microstructural changes within the corticospinal tract in idiopathic normal pressure hydrocephalus. <i>NeuroImage: Clinical</i> , 2017 , 14, 663-671	5.3	32
88	Usefulness of Non-Contrast-Enhanced MR Angiography Using a Silent Scan for Follow-Up after Y-Configuration Stent-Assisted Coil Embolization for Basilar Tip Aneurysms. <i>American Journal of Neuroradiology</i> , 2017 , 38, 577-581	4.4	34
87	Teaching Neuroimages: Obscured Cerebral Infarction on MRI. Clinical Neuroradiology, 2017 , 27, 519-520	2.7	10
86	Diagnostic imaging of dementia with Lewy bodies by susceptibility-weighted imaging of nigrosomes versus striatal dopamine transporter single-photon emission computed tomography: a retrospective observational study. <i>Neuroradiology</i> , 2017 , 59, 89-98	3.2	24

85	Synthetic MRI in the Detection of Multiple Sclerosis Plaques. <i>American Journal of Neuroradiology</i> , 2017 , 38, 257-263	4.4	48
84	Synthetic MR Imaging in the Diagnosis of Bacterial Meningitis. <i>Magnetic Resonance in Medical Sciences</i> , 2017 , 16, 91-92	2.9	19
83	Changes in delta ADC reflect intracranial pressure changes in craniosynostosis. <i>Acta Radiologica Open</i> , 2017 , 6, 2058460117728535	1.2	2
82	Functional subdivisions of the hypothalamus using areal parcellation and their signal changes related to glucose metabolism. <i>NeuroImage</i> , 2017 , 162, 1-12	7.9	26
81	SyMRI of the Brain: Rapid Quantification of Relaxation Rates and Proton Density, With Synthetic MRI, Automatic Brain Segmentation, and Myelin Measurement. <i>Investigative Radiology</i> , 2017 , 52, 647-6	5 ^{70.1}	98
80	Analysis of White Matter Damage in Patients with Multiple Sclerosis via a Novel In Vivo MR Method for Measuring Myelin, Axons, and G-Ratio. <i>American Journal of Neuroradiology</i> , 2017 , 38, 1934-1940	4.4	34
79	Synthetic MRI showed increased myelin partial volume in the white matter of a patient with Sturge-Weber syndrome. <i>Neuroradiology</i> , 2017 , 59, 1065-1066	3.2	7
78	Neurite orientation dispersion and density imaging for evaluation of corticospinal tract in idiopathic normal pressure hydrocephalus. <i>Japanese Journal of Radiology</i> , 2017 , 35, 25-30	2.9	14
77	Utility of a Multiparametric Quantitative MRI Model That Assesses Myelin and Edema for Evaluating Plaques, Periplaque White Matter, and Normal-Appearing White Matter in Patients with Multiple Sclerosis: A Feasibility Study. <i>American Journal of Neuroradiology</i> , 2017 , 38, 237-242	4.4	37
76	Advanced diffusion-weighted magnetic resonance imaging in the evaluation of white matter axons in patients with idiopathic normal pressure hydrocephalus. <i>Neural Regeneration Research</i> , 2017 , 12, 197	744797!	5
7675			5
	in patients with idiopathic normal pressure hydrocephalus. Neural Regeneration Research, 2017 , 12, 197		
75	in patients with idiopathic normal pressure hydrocephalus. <i>Neural Regeneration Research</i> , 2017 , 12, 197. The Infundibular Recess Passes through the Entire Pituitary Stalk. <i>Clinical Neuroradiology</i> , 2016 , 26, 469. Estimation of the Mean Axon Diameter and Intra-axonal Space Volume Fraction of the Human Corpus Callosum: Diffusion q-space Imaging with Low q-values. <i>Magnetic Resonance in Medical</i>	5- <u>4</u> 69	5
75 74	in patients with idiopathic normal pressure hydrocephalus. <i>Neural Regeneration Research</i> , 2017 , 12, 197. The Infundibular Recess Passes through the Entire Pituitary Stalk. <i>Clinical Neuroradiology</i> , 2016 , 26, 465. Estimation of the Mean Axon Diameter and Intra-axonal Space Volume Fraction of the Human Corpus Callosum: Diffusion q-space Imaging with Low q-values. <i>Magnetic Resonance in Medical Sciences</i> , 2016 , 15, 83-93. Usefulness of T2 star-weighted imaging in ovarian cysts and tumors. <i>Journal of Obstetrics and</i>	5- 469 2.9	5
75 74 73	In patients with idiopathic normal pressure hydrocephalus. <i>Neural Regeneration Research</i> , 2017 , 12, 197. The Infundibular Recess Passes through the Entire Pituitary Stalk. <i>Clinical Neuroradiology</i> , 2016 , 26, 465. Estimation of the Mean Axon Diameter and Intra-axonal Space Volume Fraction of the Human Corpus Callosum: Diffusion q-space Imaging with Low q-values. <i>Magnetic Resonance in Medical Sciences</i> , 2016 , 15, 83-93. Usefulness of T2 star-weighted imaging in ovarian cysts and tumors. <i>Journal of Obstetrics and Gynaecology Research</i> , 2016 , 42, 1336-1342.	2.9	5 6 4
75 74 73 72	The Infundibular Recess Passes through the Entire Pituitary Stalk. <i>Clinical Neuroradiology</i> , 2016 , 26, 465. Estimation of the Mean Axon Diameter and Intra-axonal Space Volume Fraction of the Human Corpus Callosum: Diffusion q-space Imaging with Low q-values. <i>Magnetic Resonance in Medical Sciences</i> , 2016 , 15, 83-93. Usefulness of T2 star-weighted imaging in ovarian cysts and tumors. <i>Journal of Obstetrics and Gynaecology Research</i> , 2016 , 42, 1336-1342. A strategy to optimize radiation exposure for non-contrast head CT: comparison with the Japanese diagnostic reference levels. <i>Japanese Journal of Radiology</i> , 2016 , 34, 451-7. Diffusion-tensor-based method for robust and practical estimation of axial and radial diffusional	2.9 1.9	5646
75 74 73 72 71	The Infundibular Recess Passes through the Entire Pituitary Stalk. <i>Clinical Neuroradiology</i> , 2016 , 26, 469. Estimation of the Mean Axon Diameter and Intra-axonal Space Volume Fraction of the Human Corpus Callosum: Diffusion q-space Imaging with Low q-values. <i>Magnetic Resonance in Medical Sciences</i> , 2016 , 15, 83-93 Usefulness of T2 star-weighted imaging in ovarian cysts and tumors. <i>Journal of Obstetrics and Gynaecology Research</i> , 2016 , 42, 1336-1342 A strategy to optimize radiation exposure for non-contrast head CT: comparison with the Japanese diagnostic reference levels. <i>Japanese Journal of Radiology</i> , 2016 , 34, 451-7 Diffusion-tensor-based method for robust and practical estimation of axial and radial diffusional kurtosis. <i>European Radiology</i> , 2016 , 26, 2559-66 Contrast-enhanced synthetic MRI for the detection of brain metastases. <i>Acta Radiologica Open</i> ,	2.9 1.9 2.9	56468

(2014-2016)

67	Peking University - Juntendo University Joint Symposium on Brain and Skin Diseases. <i>Juntendo Medical Journal</i> , 2016 , 62, 300-301	0.1	1
66	Quantitative Histological Validation of Diffusion Tensor MRI with Two-Photon Microscopy of Cleared Mouse Brain. <i>Magnetic Resonance in Medical Sciences</i> , 2016 , 15, 416-421	2.9	10
65	Dural Enhancement in a Patient with Sturge-Weber Syndrome Revealed by Double Inversion Recovery Contrast Using Synthetic MRI. <i>Magnetic Resonance in Medical Sciences</i> , 2016 , 15, 151-2	2.9	21
64	Diffusional Kurtosis Imaging in Idiopathic Normal Pressure Hydrocephalus: Correlation with Severity of Cognitive Impairment. <i>Magnetic Resonance in Medical Sciences</i> , 2016 , 15, 316-23	2.9	16
63	The Advantage of Synthetic MRI for the Visualization of Early White Matter Change in an Infant with Sturge-Weber Syndrome. <i>Magnetic Resonance in Medical Sciences</i> , 2016 , 15, 347-348	2.9	23
62	The assessment of myometrium perfusion in patients with uterine fibroid by arterial spin labeling MRI. <i>SpringerPlus</i> , 2016 , 5, 1907		5
61	Time Course of Diffusion Kurtosis in Cerebral Infarctions of Transient Middle Cerebral Artery Occlusion Rat Model. <i>Journal of Stroke and Cerebrovascular Diseases</i> , 2016 , 25, 610-7	2.8	7
60	Assessing Blood Flow in an Intracranial Stent: A Feasibility Study of MR Angiography Using a Silent Scan after Stent-Assisted Coil Embolization for Anterior Circulation Aneurysms. <i>American Journal of Neuroradiology</i> , 2015 , 36, 967-70	4.4	51
59	A longitudinal study investigating sub-threshold symptoms and white matter changes in individuals with an Qt risk mental stateQARMS). <i>Schizophrenia Research</i> , 2015 , 162, 7-13	3.6	43
58	See-through Brains and Diffusion Tensor MRI Clarified Fiber Connections: A Preliminary Microstructural Study in a Mouse with Callosal Agenesis. <i>Magnetic Resonance in Medical Sciences</i> , 2015 , 14, 159-62	2.9	7
57	Intersite Reliability of Diffusion Tensor Imaging on Two 3T Scanners. <i>Magnetic Resonance in Medical Sciences</i> , 2015 , 14, 227-33	2.9	9
56	Analysis of normal-appearing white matter of multiple sclerosis by tensor-based two-compartment model of water diffusion. <i>European Radiology</i> , 2015 , 25, 1701-7	8	8
55	A preliminary diffusional kurtosis imaging study of Parkinson disease: comparison with conventional diffusion tensor imaging. <i>Neuroradiology</i> , 2014 , 56, 251-8	3.2	73
54	Diffusional kurtosis imaging analysis in patients with hypertension. <i>Japanese Journal of Radiology</i> , 2014 , 32, 98-104	2.9	11
53	Multiple sclerosis: Benefits of q-space imaging in evaluation of normal-appearing and periplaque white matter. <i>Magnetic Resonance Imaging</i> , 2014 , 32, 625-9	3.3	11
52	Non-Gaussian diffusion-weighted imaging for assessing diurnal changes in intervertebral disc microstructure. <i>Journal of Magnetic Resonance Imaging</i> , 2014 , 40, 1208-14	5.6	6
51	Cervical spondylosis: Evaluation of microstructural changes in spinal cord white matter and gray matter by diffusional kurtosis imaging. <i>Magnetic Resonance Imaging</i> , 2014 , 32, 428-32	3.3	27
50	Orbital masses: the usefulness of diffusion-weighted imaging in lesion categorization. <i>Clinical Neuroradiology</i> , 2014 , 24, 129-34	2.7	35

49	Axon diameter and intra-axonal volume fraction of the corticospinal tract in idiopathic normal pressure hydrocephalus measured by q-space imaging. <i>PLoS ONE</i> , 2014 , 9, e103842	3.7	15
48	Microstructural changes of the corticospinal tract in idiopathic normal pressure hydrocephalus: a comparison of diffusion tensor and diffusional kurtosis imaging. <i>Neuroradiology</i> , 2013 , 55, 971-976	3.2	32
47	Age-related white matter changes in high b-value q-space diffusion-weighted imaging. <i>Neuroradiology</i> , 2013 , 55, 253-9	3.2	5
46	Effects of diffusional kurtosis imaging parameters on diffusion quantification. <i>Radiological Physics and Technology</i> , 2013 , 6, 343-8	1.7	22
45	Associations among q-space MRI, diffusion-weighted MRI and histopathological parameters in meningiomas. <i>European Radiology</i> , 2013 , 23, 2258-63	8	19
44	Relationship between cognitive impairment and white-matter alteration in Parkinson@ disease with dementia: tract-based spatial statistics and tract-specific analysis. <i>European Radiology</i> , 2013 , 23, 1946-5	5 ⁸	64
43	Diffusion-weighted imaging in optic neuritis. Canadian Association of Radiologists Journal, 2013, 64, 51-5	53.9	22
42	A reply to the letter to the editor regarding "microstructural changes of the corticospinal tract in idiopathic normal pressure hydrocephalus: a comparison of diffusion tensor and diffusional kurtosis imaging". <i>Neuroradiology</i> , 2013 , 55, 1425	3.2	
41	White matter alteration in metabolic syndrome: diffusion tensor analysis. <i>Diabetes Care</i> , 2013 , 36, 696-7	704 .6	30
40	Diffusional kurtosis imaging of cingulate fibers in Parkinson disease: comparison with conventional diffusion tensor imaging. <i>Magnetic Resonance Imaging</i> , 2013 , 31, 1501-6	3.3	62
39	Diffusional kurtosis imaging of normal-appearing white matter in multiple sclerosis: preliminary clinical experience. <i>Japanese Journal of Radiology</i> , 2013 , 31, 50-5	2.9	56
38	Anterior cingulate abnormality as a neural correlate of mismatch negativity in schizophrenia. <i>Neuropsychobiology</i> , 2013 , 68, 197-204	4	9
37	Lateral and dorsal column hyperintensity on magnetic resonance imaging in a patient with myelopathy associated with intrathecal chemotherapy. <i>Case Reports in Neurology</i> , 2013 , 5, 110-5	1	6
36	High b-value q-space analyzed diffusion-weighted MRI using 1.5 tesla clinical scanner; determination of displacement parameters in the brains of normal versus multiple sclerosis and low-grade glioma subjects. <i>Journal of Neuroimaging</i> , 2012 , 22, 279-84	2.8	6
35	Distribution of estimated glomerular filtration rate (eGFR) values in patients receiving contrast-enhanced magnetic resonance imaging. <i>Japanese Journal of Radiology</i> , 2012 , 30, 116-9	2.9	
34	Myomectomy decreases abnormal uterine peristalsis and increases pregnancy rate. <i>Journal of Minimally Invasive Gynecology</i> , 2012 , 19, 63-7	2.2	45
33	A new diffusion metric, diffusion kurtosis imaging, used in the serial examination of a patient with stroke. <i>Acta Radiologica Short Reports</i> , 2012 , 1,		9
32	New diffusion metrics for spondylotic myelopathy at an early clinical stage. <i>European Radiology</i> , 2012 , 22, 1797-802	8	46

31	White matter alteration in idiopathic normal pressure hydrocephalus: tract-based spatial statistics study. <i>American Journal of Neuroradiology</i> , 2012 , 33, 97-103	4.4	57
30	White matter alteration of the cingulum in Parkinson disease with and without dementia: evaluation by diffusion tensor tract-specific analysis. <i>American Journal of Neuroradiology</i> , 2012 , 33, 890-	. 5 4·4	66
29	Visualizing non-Gaussian diffusion: clinical application of q-space imaging and diffusional kurtosis imaging of the brain and spine. <i>Magnetic Resonance in Medical Sciences</i> , 2012 , 11, 221-33	2.9	87
28	Myomectomy reduces endometrial T2 relaxation times. Fertility and Sterility, 2011, 95, 2781-3	4.8	4
27	Posterior hypoperfusion in Parkinson@ disease with and without dementia measured with arterial spin labeling MRI. <i>Journal of Magnetic Resonance Imaging</i> , 2011 , 33, 803-7	5.6	45
26	A comparison of mean displacement values using high b-value Q-space diffusion-weighted MRI with conventional apparent diffusion coefficients in patients with stroke. <i>Academic Radiology</i> , 2011 , 18, 837-	.41 ³	17
25	Mean displacement map of spine and spinal cord disorders using high b-value q-space imaging-feasibility study. <i>Acta Radiologica</i> , 2011 , 52, 1155-8	2	7
24	Utility of time-resolved three-dimensional magnetic resonance digital subtraction angiography without contrast material for assessment of intracranial dural arterio-venous fistula. <i>Acta Radiologica</i> , 2011 , 52, 808-12	2	13
23	Recent Topics of Brain MRI: Arterial Spin Labeling and New Diffusion Analysis(Neuroimaging Update). <i>Japanese Journal of Neurosurgery</i> , 2011 , 20, 655-664	О	
22	Decreased pregnancy rate is linked to abnormal uterine peristalsis caused by intramural fibroids. <i>Human Reproduction</i> , 2010 , 25, 2475-9	5.7	119
21	Can balloon-occluded retrograde transvenous obliteration be performed for gastric varices without gastrorenal shunts?. <i>Journal of Vascular and Interventional Radiology</i> , 2010 , 21, 663-70	2.4	23
20	Three-dimensional susceptibility-weighted imaging at 3 T using various image analysis methods in the estimation of grading intracranial gliomas. <i>Magnetic Resonance Imaging</i> , 2010 , 28, 594-8	3.3	32
19	Time-resolved contrast-enhanced magnetic resonance digital subtraction angiography (MRDSA) in an infant with congenital pial arteriovenous fistula in the brain: a case report. <i>Childos Nervous System</i> , 2010 , 26, 1121-4	1.7	11
18	Precontrast and postcontrast susceptibility-weighted imaging in the assessment of intracranial brain neoplasms at 1.5 T. <i>Japanese Journal of Radiology</i> , 2010 , 28, 299-304	2.9	26
17	q-space imaging (QSI) of the brain: comparison of displacement parameters by QSI and DWI. <i>Magnetic Resonance in Medical Sciences</i> , 2010 , 9, 109-10	2.9	7
16	Time-resolved three-dimensional magnetic resonance digital subtraction angiography without contrast material in the brain: Initial investigation. <i>Journal of Magnetic Resonance Imaging</i> , 2009 , 30, 214	4-58 ⁶	18
15	Transient restricted diffusion of whole corpus callosum and symmetrical white matter in epilepsy. <i>Internal Medicine</i> , 2009 , 48, 583-4	1.1	2
14	Diffusion tensor tractography predicts motor functional outcome in patients with spontaneous	3.2	87

13	Mean diffusivity, fractional anisotropy maps, and three-dimensional white-matter tractography by diffusion tensor imaging. Comparison between single-shot fast spin-echo and single-shot echo-planar sequences at 1.5 Tesla. <i>European Radiology</i> , 2008 , 18, 830-4	8	11
12	Line scan diffusion tensor MRI at low magnetic field strength: feasibility study of cervical spondylotic myelopathy in an early clinical stage. <i>Journal of Magnetic Resonance Imaging</i> , 2006 , 23, 183	-8 ^{5.6}	43
11	Effect of injection rate of contrast material on CT of hepatocellular carcinoma. <i>American Journal of Roentgenology</i> , 2006 , 186, 1413-8	5.4	17
10	The magnetic resonance Matas test: Feasibility and comparison with the conventional intraarterial balloon test occlusion with SPECT perfusion imaging. <i>Journal of Magnetic Resonance Imaging</i> , 2005 , 21, 709-14	5.6	4
9	Line-scan diffusion tensor MR imaging at 0.2 T: feasibility study. <i>Journal of Magnetic Resonance Imaging</i> , 2005 , 22, 794-8	5.6	5
8	Comparison of true FISP with turbo SE in ovarian imaging. <i>Magnetic Resonance in Medical Sciences</i> , 2004 , 3, 119-24	2.9	
7	T1-weighted fluid-attenuated inversion recovery at low field strength: a viable alternative for T1-weighted intracranial imaging. <i>American Journal of Neuroradiology</i> , 2003 , 24, 648-51	4.4	16
6	Creutzfeldt-Jacob disease shown by line scan diffusion-weighted imaging. <i>American Journal of Roentgenology</i> , 2003 , 180, 1481-2	5.4	1
5	Electrophysiological, anatomical and histological remodeling of the heart to AV block enhances susceptibility to arrhythmogenic effects of QT-prolonging drugs. <i>The Japanese Journal of Pharmacology</i> , 2002 , 88, 341-50		49
4	Velocity-coded colour magnetic resonance angiography and perfusion-weighted magnetic resonance imaging for the evaluation of extracranial-to-intracranial arterial bypass surgery. <i>Clinical Neurology and Neurosurgery</i> , 2002 , 105, 48-59	2	2
3	Two-dimensional thick-slice MR digital subtraction angiography for assessment of cerebrovascular occlusive diseases. <i>European Radiology</i> , 2000 , 10, 1858-64	8	30
2	Time-resolved two-dimensional thick-slice magnetic resonance digital subtraction angiography in assessing brain tumors. <i>European Radiology</i> , 2000 , 10, 736-44	8	30
1	MR digital subtraction angiography for the assessment of cranial arteriovenous malformations and	5.4	44