Jeremy E Turnbull

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3253372/publications.pdf

Version: 2024-02-01

117571 91828 5,493 72 34 69 citations g-index h-index papers 82 82 82 6815 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Highâ€Fat Highâ€Fructose Diet Dysregulates the Homeostatic Crosstalk Between Gut Microbiome, Metabolome, and Immunity in an Experimental Model of Obesity. Molecular Nutrition and Food Research, 2022, 66, e2100950.	1.5	15
2	Synthetic Heparan Sulfate Mimetic Pixatimod (PG545) Potently Inhibits SARS-CoV-2 by Disrupting the Spike–ACE2 Interaction. ACS Central Science, 2022, 8, 527-545.	5.3	62
3	Unfractionated heparin inhibits live wild type SARSâ€CoVâ€2 cell infectivity at therapeutically relevant concentrations. British Journal of Pharmacology, 2021, 178, 626-635.	2.7	73
4	Tian-Huang Formula, a Traditional Chinese Medicinal Prescription, Improves Hepatosteatosis and Glucose Intolerance Targeting AKT-SREBP Nexus in Diet-Induced Obese Rats. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-15.	0.5	2
5	The Hyperlipidaemic Drug Fenofibrate Significantly Reduces Infection by SARS-CoV-2 in Cell Culture Models. Frontiers in Pharmacology, 2021, 12, 660490.	1.6	31
6	Evidence of a putative glycosaminoglycan binding site on the glycosylated SARS-CoV-2 spike protein N-terminal domain. Computational and Structural Biotechnology Journal, 2021, 19, 2806-2818.	1.9	33
7	Dissecting structure-function of 3-O-sulfated heparin and engineered heparan sulfates. Science Advances, 2021, 7, eabl6026.	4.7	23
8	Interaction with the heparin-derived binding inhibitors destabilizes galectin-3 protein structure. Biochemical and Biophysical Research Communications, 2020, 523, 336-341.	1.0	12
9	Cryogenic Infrared Spectroscopy Reveals Structural Modularity in the Vibrational Fingerprints of Heparan Sulfate Diastereomers. Analytical Chemistry, 2020, 92, 10228-10232.	3.2	20
10	Shotgun ion mobility mass spectrometry sequencing of heparan sulfate saccharides. Nature Communications, 2020, 11, 1481.	5.8	39
11	Better growth-factor binding aids tissue repair. Nature Biomedical Engineering, 2020, 4, 368-369.	11.6	4
12	Heparin Inhibits Cellular Invasion by SARS-CoV-2: Structural Dependence of the Interaction of the Spike S1 Receptor-Binding Domain with Heparin. Thrombosis and Haemostasis, 2020, 120, 1700-1715.	1.8	228
13	Intrinsic tryptophan fluorescence spectroscopy reliably determines galectin-ligand interactions. Scientific Reports, 2019, 9, 11851.	1.6	52
14	Omics Insights into Metabolic Stress and Resilience of Rats in Response to Shortâ€term Fructose Overfeeding. Molecular Nutrition and Food Research, 2019, 63, e1900773.	1.5	8
15	Low sulfated heparins target multiple proteins for central nervous system repair. Glia, 2019, 67, 668-687.	2.5	18
16	By-Products of Heparin Production Provide a Diverse Source of Heparin-like and Heparan Sulfate Glycosaminoglycans. Scientific Reports, 2019, 9, 2679.	1.6	18
17	Heparan Sulfate Proteoglycan Synthesis Is Dysregulated in Human Osteoarthritic Cartilage. American Journal of Pathology, 2019, 189, 632-647.	1.9	33
18	The Satellite Cell Niche Regulates the Balance between Myoblast Differentiation and Self-Renewal via p53. Stem Cell Reports, 2018, 10, 970-983.	2.3	41

#	Article	IF	CITATIONS
19	Dendrimer Heparan Sulfate Glycomimetics: Potent Heparanase Inhibitors for Anticancer Therapy. ACS Chemical Biology, 2018, 13, 3236-3242.	1.6	28
20	Enhancing the glycosciences toolkit: new GAGs in the lineup. Nature Methods, 2018, 15, 867-868.	9.0	3
21	Versatile Separation and Analysis of Heparan Sulfate Oligosaccharides Using Graphitized Carbon Liquid Chromatography and Electrospray Mass Spectrometry. Analytical Chemistry, 2017, 89, 8942-8950.	3.2	27
22	How members of the human gut microbiota overcome the sulfation problem posed by glycosaminoglycans. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7037-7042.	3.3	99
23	Sulfataseâ€mediated manipulation of the astrocyteâ€Schwann cell interface. Glia, 2017, 65, 19-33.	2.5	18
24	Glycoarray Technologies: Deciphering Interactions from Proteins to Live Cell Responses. Microarrays (Basel, Switzerland), 2016, 5, 3.	1.4	26
25	Heparin Isomeric Oligosaccharide Separation Using Volatile Salt Strong Anion Exchange Chromatography. Analytical Chemistry, 2016, 88, 11542-11550.	3.2	19
26	Enrichment of Two Isomeric Heparin Oligosaccharides Exhibiting Different Affinities toward Monocyte Chemoattractant Protein-1. Analytical Chemistry, 2016, 88, 11551-11558.	3.2	11
27	Composition, Sequencing and Ion Mobility Mass Spectrometry of Heparan Sulfate-like Octasaccharide Isomers Differing in Glucuronic and Iduronic Acid Content. European Journal of Mass Spectrometry, 2015, 21, 245-254.	0.5	20
28	Singleâ€Entity Heparan Sulfate Glycomimetic Clusters for Therapeutic Applications. Angewandte Chemie, 2015, 127, 2756-2761.	1.6	9
29	Singleâ€Entity Heparan Sulfate Glycomimetic Clusters for Therapeutic Applications. Angewandte Chemie - International Edition, 2015, 54, 2718-2723.	7.2	34
30	Distinct patterns of heparan sulphate in pancreatic islets suggest novel roles in paracrine islet regulation. Molecular and Cellular Endocrinology, 2015, 399, 296-310.	1.6	17
31	2-O Heparan Sulfate Sulfation by Hs2st Is Required for Erk/Mapk Signalling Activation at the Mid-Gestational Mouse Telencephalic Midline. PLoS ONE, 2015, 10, e0130147.	1.1	19
32	Sulf1 and Sulf2 Differentially Modulate Heparan Sulfate Proteoglycan Sulfation during Postnatal Cerebellum Development: Evidence for Neuroprotective and Neurite Outgrowth Promoting Functions. PLoS ONE, 2015, 10, e0139853.	1.1	45
33	Chemically modified, non-anticoagulant heparin derivatives are potent galectin-3 binding inhibitors and inhibit circulating galectin-3-promoted metastasis. Oncotarget, 2015, 6, 23671-23687.	0.8	43
34	MYCN-Dependent Expression of Sulfatase-2 Regulates Neuroblastoma Cell Survival. Cancer Research, 2014, 74, 5999-6009.	0.4	9
35	Nanoscale self-assembled multivalent (SAMul) heparin binders in highly competitive, biologically relevant, aqueous media. Chemical Science, 2014, 5, 1484.	3.7	42
36	Synthesis of a Targeted Library of Heparan Sulfate Hexa―to Dodecasaccharides as Inhibitors of βâ€6ecretase: Potential Therapeutics for Alzheimer's Disease. Chemistry - A European Journal, 2013, 19, 6817-6823.	1.7	80

#	Article	IF	Citations
37	Differential Sulfation Remodelling of Heparan Sulfate by Extracellular 6- <i>O</i> -Sulfatases Regulates Fibroblast Growth Factor-Induced Boundary Formation by Glial Cells: Implications for Glial Cell Transplantation. Journal of Neuroscience, 2012, 32, 15902-15912.	1.7	38
38	Glycomics Approaches for the Bioassay and Structural Analysis of Heparin/Heparan Sulphates. Metabolites, 2012, 2, 1060-1089.	1.3	4
39	Array-Based Functional Screening of Heparin Glycans. Chemistry and Biology, 2012, 19, 553-558.	6.2	22
40	Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. Journal of Endocrinology, 2011, 209, 139-151.	1.2	985
41	Getting the Farm Out of Pharma for Heparin Production. Science, 2011, 334, 462-463.	6.0	19
42	Heparan sulfate glycomics: towards systems biology strategies. Biochemical Society Transactions, 2010, 38, 1356-1360.	1.6	26
43	Disaccharide compositional analysis of heparan sulfate and heparin polysaccharides using UV or high-sensitivity fluorescence (BODIPY) detection. Nature Protocols, 2010, 5, 1983-1992.	5.5	47
44	Glycomics: Technologies Taming a Frontier Omics Field. OMICS A Journal of Integrative Biology, 2010, 14, 385-387.	1.0	5
45	Glycomics Profiling of Heparan Sulfate Structure and Activity. Methods in Enzymology, 2010, 480, 65-85.	0.4	25
46	Generating heparan sulfate saccharide libraries for glycomics applications. Nature Protocols, 2010, 5, 821-833.	5.5	47
47	Rapid Purification and High Sensitivity Analysis of Heparan Sulfate from Cells and Tissues. Journal of Biological Chemistry, 2009, 284, 25714-25722.	1.6	44
48	Cations Modulate Polysaccharide Structure To Determine FGFâ^'FGFR Signaling: A Comparison of Signaling and Inhibitory Polysaccharide Interactions with FGF-1 in Solution. Biochemistry, 2009, 48, 4772-4779.	1.2	16
49	Modular Synthesis of Heparan Sulfate Oligosaccharides for Structureâ^'Activity Relationship Studies. Journal of the American Chemical Society, 2009, 131, 17394-17405.	6.6	246
50	The potential for circular dichroism as an additional facile and sensitive method of monitoring low-molecular-weight heparins and heparinoids. Thrombosis and Haemostasis, 2009, 102, 874-878.	1.8	25
51	Labelling Heparan Sulphate Saccharides with Chromophore, Fluorescence and Mass Tags for HPLC and MS Separations. , 2009, 534, 157-169.		20
52	Saccharide Microarrays for High-Throughput Interrogation of Glycan-Protein Binding Interactions., 2009, 534, 312-329.		14
53	A Versatile Gold Surface Approach for Fabrication and Interrogation of Glycoarrays. ChemBioChem, 2008, 9, 1568-1575.	1.3	88
54	Software Tool for the Structural Determination of Glycosaminoglycans by Mass Spectrometry. Analytical Chemistry, 2008, 80, 9204-9212.	3.2	33

#	Article	IF	CITATIONS
55	Influence of substitution pattern and cation binding on conformation and activity in heparin derivatives. Glycobiology, 2007, 17, 983-993.	1.3	66
56	Towards GAG glycomics: Analysis of highly sulfated heparins by MALDI-TOF massÂspectrometry. Glycobiology, 2007, 17, 972-982.	1.3	62
57	Fabrication of Carbohydrate Microarrays on Gold Surfaces:Â Direct Attachment of Nonderivatized Oligosaccharides to Hydrazide-Modified Self-Assembled Monolayers. Analytical Chemistry, 2006, 78, 4786-4793.	3.2	118
58	Heparin Derivatives as Inhibitors of BACE-1, the Alzheimer's \hat{l}^2 -Secretase, with Reduced Activity against Factor Xa and Other Proteases. Journal of Medicinal Chemistry, 2006, 49, 6129-6132.	2.9	69
59	Synthetic sugars enhance the functional glycomics toolkit. Nature Chemical Biology, 2006, 2, 449-450.	3.9	9
60	Engineered Bio-Active Polysaccharides from Heparin. Macromolecular Bioscience, 2006, 6, 681-686.	2.1	15
61	A Molecular Mechanism for the Heparan Sulfate Dependence of Slit-Robo Signaling. Journal of Biological Chemistry, 2006, 281, 39693-39698.	1.6	99
62	Interactions of heparin/heparan sulfate with proteins: Appraisal of structural factors and experimental approaches. Glycobiology, 2004, 14, 17R-30R.	1.3	231
63	Highly Diverse Heparan Sulfate Analogue Libraries:  Providing Access to Expanded Areas of Sequence Space for Bioactivity Screening. Journal of Medicinal Chemistry, 2004, 47, 277-280.	2.9	39
64	Microwave enhanced reaction of carbohydrates with amino-derivatised labels and glass surfaces. Journal of Materials Chemistry, 2003, 13, 2061.	6.7	41
65	Heparan sulfate regulates amyloid precursor protein processing by BACE1, the Alzheimer's \hat{l}^2 -secretase. Journal of Cell Biology, 2003, 163, 97-107.	2.3	175
66	Variant heparan sulfates synthesized in developing mouse brain differentially regulate FGF signaling. Glycobiology, 2002, 12, 721-727.	1.3	64
67	Heparan sulfate: decoding a dynamic multifunctional cell regulator. Trends in Cell Biology, 2001, 11, 75-82.	3.6	440
68	Integral Glycan Sequencing of Heparan Sulfate and Heparin Saccharides. , 2001, 171, 129-139.		10
69	Fibroblast growth factor receptor signalling is dictated by specific heparan sulphate saccharides. Current Biology, 1999, 9, 1343-1346.	1.8	186
70	Structural Modification of Fibroblast Growth Factor-binding Heparan Sulfate at a Determinative Stage of Neural Development. Journal of Biological Chemistry, 1998, 273, 4350-4359.	1.6	165
71	Heparan Sulfate Undergoes Specific Structural Changes during the Progression from Human Colon Adenoma to Carcinoma in Vitro. Journal of Biological Chemistry, 1998, 273, 51-57.	1.6	119
72	Heparan Sulfate Oligosaccharides Require 6-O-Sulfation for Promotion of Basic Fibroblast Growth Factor Mitogenic Activity. Journal of Biological Chemistry, 1998, 273, 22936-22942.	1.6	263