
Baodong Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3252898/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Community response of arbuscular mycorrhizal fungi to extreme drought in a coldâ€ŧemperate grassland. New Phytologist, 2022, 234, 2003-2017.	3.5	35
2	The toxicity of hexavalent chromium to soil microbial processes concerning soil properties and aging time. Environmental Research, 2022, 204, 111941.	3.7	19
3	Structure and diversity of fungal communities in long-term copper-contaminated agricultural soil. Science of the Total Environment, 2022, 806, 151302.	3.9	20
4	Ozone does not diminish the beneficial effects of arbuscular mycorrhizas on Medicago sativa L. in a low phosphorus soil. Mycorrhiza, 2022, 32, 33-43.	1.3	6
5	Arbuscular Mycorrhizal Fungi Induced Plant Resistance against Fusarium Wilt in Jasmonate Biosynthesis Defective Mutant and Wild Type of Tomato. Journal of Fungi (Basel, Switzerland), 2022, 8, 422.	1.5	17
6	Contrasting community responses of root and soil dwelling fungi to extreme drought in a temperate grassland. Soil Biology and Biochemistry, 2022, 169, 108670.	4.2	11
7	Long-term nickel contamination increased soil fungal diversity and altered fungal community structure and co-occurrence patterns in agricultural soils. Journal of Hazardous Materials, 2022, 436, 129113.	6.5	19
8	Increased Carbon Partitioning to Secondary Metabolites Under Phosphorus Deficiency in Glycyrrhiza uralensis Fisch. Is Modulated by Plant Growth Stage and Arbuscular Mycorrhizal Symbiosis. Frontiers in Plant Science, 2022, 13, .	1.7	6
9	Mycorrhiza and Iron Tailings Synergistically Enhance Maize Resistance to Arsenic on Medium Arsenic-Polluted Soils Through Increasing Phosphorus and Iron Uptake. Bulletin of Environmental Contamination and Toxicology, 2021, 107, 1155-1160.	1.3	5
10	Arsenic transformation and volatilization by arbuscular mycorrhizal symbiosis under axenic conditions. Journal of Hazardous Materials, 2021, 413, 125390.	6.5	14
11	Soil N2O emissions are more sensitive to phosphorus addition and plant presence than to nitrogen addition and arbuscular mycorrhizal fungal inoculation. Rhizosphere, 2021, 19, 100414.	1.4	8
12	Soil organic carbon and total nitrogen predict large-scale distribution of soil fungal communities in temperate and alpine shrub ecosystems. European Journal of Soil Biology, 2021, 102, 103270.	1.4	10
13	Relationship between soil chemical properties and microbial metabolic patterns in intensive greenhouse tomato production systems. Archives of Agronomy and Soil Science, 2020, 66, 1334-1343.	1.3	8
14	Arbuscular Mycorrhizal Fungi Can Compensate for the Loss of Indigenous Microbial Communities to Support the Growth of Liquorice (Glycyrrhiza uralensis Fisch.). Plants, 2020, 9, 7.	1.6	18
15	Arbuscular mycorrhiza improved drought tolerance of maize seedlings by altering photosystem II efficiency and the levels of key metabolites. Chemical and Biological Technologies in Agriculture, 2020, 7, .	1.9	25
16	Nitrogen and water addition regulate soil fungal diversity and co-occurrence networks. Journal of Soils and Sediments, 2020, 20, 3192-3203.	1.5	18
17	Soil fungal community is more sensitive to nitrogen deposition than increased rainfall in a mixed deciduous forest of China. Soil Ecology Letters, 2020, 2, 20-32.	2.4	23
18	Effects of external Mn2+ activities on OsNRAMP5 expression level and Cd accumulation in indica rice. Environmental Pollution, 2020, 260, 113941.	3.7	22

#	Article	IF	CITATIONS
19	Arbuscular mycorrhiza induced putrescine degradation into γ-aminobutyric acid, malic acid accumulation, and improvement of nitrogen assimilation in roots of water-stressed maize plants. Mycorrhiza, 2020, 30, 329-339.	1.3	36
20	Biogeographical constraints in Glomeromycotinan distribution across forest habitats in China. Journal of Ecology, 2019, 107, 684-695.	1.9	10
21	Arbuscular mycorrhiza and plant chromium tolerance. Soil Ecology Letters, 2019, 1, 94-104.	2.4	35
22	Arbuscular Mycorrhizal Fungus Improves Rhizobium–Glycyrrhiza Seedling Symbiosis under Drought Stress. Agronomy, 2019, 9, 572.	1.3	28
23	Long-term nitrogen addition changes soil microbial community and litter decomposition rate in a subtropical forest. Applied Soil Ecology, 2019, 142, 43-51.	2.1	52
24	Arbuscular Mycorrhizal Symbiosis Affects Plant Immunity to Viral Infection and Accumulation. Viruses, 2019, 11, 534.	1.5	38
25	Latitudinal constraints in responsiveness of plants to arbuscular mycorrhiza: the â€~sunâ€worshipper' hypothesis. New Phytologist, 2019, 224, 552-556.	3.5	12
26	Complex regulatory network allows Myriophyllum aquaticum to thrive under high-concentration ammonia toxicity. Scientific Reports, 2019, 9, 4801.	1.6	11
27	Contrasting latitudinal diversity and co-occurrence patterns of soil fungi and plants in forest ecosystems. Soil Biology and Biochemistry, 2019, 131, 100-110.	4.2	71
28	Improved phosphorus nutrition by arbuscular mycorrhizal symbiosis as a key factor facilitating glycyrrhizin and liquiritin accumulation in Glycyrrhiza uralensis. Plant and Soil, 2019, 439, 243-257.	1.8	35
29	Research progress in arbuscular mycorrhizal technology. Chinese Journal of Applied Ecology, 2019, 30, 1035-1046.	0.4	1
30	Arbuscular mycorrhiza facilitates the accumulation of glycyrrhizin and liquiritin in Glycyrrhiza uralensis under drought stress. Mycorrhiza, 2018, 28, 285-300.	1.3	104
31	Arbuscular mycorrhiza enhances drought tolerance of tomato plants by regulating the 14-3-3 genes in the ABA signaling pathway. Applied Soil Ecology, 2018, 125, 213-221.	2.1	59
32	Arbuscular mycorrhizal fungi alleviate arsenic toxicity to Medicago sativa by influencing arsenic speciation and partitioning. Ecotoxicology and Environmental Safety, 2018, 157, 235-243.	2.9	61
33	Soil pH and plant diversity shape soil bacterial community structure in the active layer across the latitudinal gradients in continuous permafrost region of Northeastern China. Scientific Reports, 2018, 8, 5619.	1.6	96
34	Rhizophagus irregularis influences As and P uptake by alfafa and the neighboring non-host pepperweed growing in an As-contaminated soil. Journal of Environmental Sciences, 2018, 67, 36-44.	3.2	13
35	Mycorrhizal fungi show regular community compositions in natural ecosystems. ISME Journal, 2018, 12, 380-385.	4.4	18
36	Chromium detoxification in arbuscular mycorrhizal symbiosis mediated by sulfur uptake and metabolism. Environmental and Experimental Botany, 2018, 147, 43-52.	2.0	36

#	Article	IF	CITATIONS
37	Influences of Canopy Nitrogen and Water Addition on AM Fungal Biodiversity and Community Composition in a Mixed Deciduous Forest of China. Frontiers in Plant Science, 2018, 9, 1842.	1.7	26
38	Uptake and Intraradical Immobilization of Cadmium by Arbuscular Mycorrhizal Fungi as Revealed by a Stable Isotope Tracer and Synchrotron Radiation μX-Ray Fluorescence Analysis. Microbes and Environments, 2018, 33, 257-263.	0.7	56
39	Arbuscular mycorrhiza affects grapevine fanleaf virus transmission by the nematode vector Xiphinema index. Applied Soil Ecology, 2018, 129, 107-111.	2.1	20
40	A methyltransferase gene from arbuscular mycorrhizal fungi involved in arsenic methylation and volatilization. Chemosphere, 2018, 209, 392-400.	4.2	26
41	Transmembrane H + and Ca 2+ fluxes through extraradical hyphae of arbuscular mycorrhizal fungi in response to drought stress. Chinese Journal of Plant Ecology, 2018, 42, 764-773.	0.3	4
42	Advances in the biogeography of arbuscular mycorrhizal fungi. Acta Ecologica Sinica, 2018, 38, .	0.0	0
43	Biocontrol of grapevine aerial and root pathogens by Paenibacillus sp. strain B2 and paenimyxin in vitro and in planta. Biological Control, 2017, 109, 42-50.	1.4	20
44	Plant diversity represents the prevalent determinant of soil fungal community structure across temperate grasslands in northern China. Soil Biology and Biochemistry, 2017, 110, 12-21.	4.2	202
45	Priorities for research in soil ecology. Pedobiologia, 2017, 63, 1-7.	0.5	64
46	Shifts in microbial trophic strategy explain different temperature sensitivity of CO2 flux under constant and diurnally varying temperature regimes. FEMS Microbiology Ecology, 2017, 93, .	1.3	38
47	Q10 values vary with different kinetic properties of C mineralization. Pedobiologia, 2017, 63, 8-13.	0.5	0
48	Nitrogen deposition and precipitation induced phylogenetic clustering of arbuscular mycorrhizal fungal communities. Soil Biology and Biochemistry, 2017, 115, 233-242.	4.2	87
49	Structural features of the aromatic/arginine constriction in the aquaglyceroporin CintAQPF2 are responsible for glycerol impermeability in arbuscular mycorrhizal symbiosis. Fungal Biology, 2017, 121, 95-102.	1.1	4
50	Arbuscular mycorrhiza improves plant adaptation to phosphorus deficiency through regulating the expression of genes relevant to carbon and phosphorus metabolism. Chinese Journal of Plant Ecology, 2017, 41, 815-825.	0.3	3
51	Ecological distribution of arbuscular mycorrhizal fungi and the influencing factors. Acta Ecologica Sinica, 2017, 37, .	0.0	0
52	Coupling of soil prokaryotic diversity and plant diversity across latitudinal forest ecosystems. Scientific Reports, 2016, 6, 19561.	1.6	50
53	Plant community, geographic distance and abiotic factors play different roles in predicting AMF biogeography at the regional scale in northern China. Environmental Microbiology, 2016, 8, 1048.	1.8	1
54	Relative Importance of Individual Climatic Drivers Shaping Arbuscular Mycorrhizal Fungal Communities. Microbial Ecology, 2016, 72, 418-427.	1.4	20

#	Article	IF	CITATIONS
55	Water management, rice varieties and mycorrhizal inoculation influence arsenic concentration and speciation in rice grains. Mycorrhiza, 2016, 26, 299-309.	1.3	19
56	Chromium immobilization by extra- and intraradical fungal structures of arbuscular mycorrhizal symbioses. Journal of Hazardous Materials, 2016, 316, 34-42.	6.5	68
57	Plant community, geographic distance and abiotic factors play different roles in predicting AMF biogeography at the regional scale in northern China. Environmental Microbiology Reports, 2016, 8, 1048-1057.	1.0	66
58	The interplay between soil structure, roots, and microbiota as a determinant of plant–soil feedback. Ecology and Evolution, 2016, 6, 7633-7644.	0.8	46
59	Comparison on the structure and function of the rhizosphere microbial community between healthy and root-rot Panax notoginseng. Applied Soil Ecology, 2016, 107, 99-107.	2.1	68
60	Potential role of D-myo-inositol-3-phosphate synthase and 14-3-3 genes in the crosstalk between Zea mays and Rhizophagus intraradices under drought stress. Mycorrhiza, 2016, 26, 879-893.	1.3	49
61	The molecular diversity of arbuscular mycorrhizal fungi in the arsenic mining impacted sites in Hunan Province of China. Journal of Environmental Sciences, 2016, 39, 110-118.	3.2	40
62	Specificity and selectivity of arbuscular mycorrhizal fungal polymerase chain reaction primers in soil samples by clone library analyses. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2016, 66, 333-339.	0.3	3
63	Chromium immobilization by extraradical mycelium of arbuscular mycorrhiza contributes to plant chromium tolerance. Environmental and Experimental Botany, 2016, 122, 10-18.	2.0	68
64	Study on the arsenic accumulation and speciation of arbuscular mycorrhizal symbiont under arsenic contamination. Arsenic in the Environment Proceedings, 2016, , 109-110.	0.0	0
65	Mycorrhizal effects on growth, P uptake and Cd tolerance of the host plant vary among different AM fungal species. Soil Science and Plant Nutrition, 2015, 61, 359-368.	0.8	44
66	Arbuscular mycorrhizal symbiosis influences arsenic accumulation and speciation in Medicago truncatula L. in arsenic-contaminated soil. Chemosphere, 2015, 119, 224-230.	4.2	60
67	Arbuscular mycorrhizal symbiosis can mitigate the negative effects of night warming on physiological traits of Medicago truncatula L. Mycorrhiza, 2015, 25, 131-142.	1.3	21
68	Cr Stable Isotope Fractionation in Arbuscular Mycorrhizal Dandelion and Cr Uptake by Extraradical Mycelium. Pedosphere, 2015, 25, 186-191.	2.1	11
69	Branching out: Towards a trait-based understanding of fungal ecology. Fungal Biology Reviews, 2015, 29, 34-41.	1.9	118
70	Mycorrhizal fungi associated with high soil N:P ratios are more likely to be lost upon conversion from grasslands to arable agriculture. Soil Biology and Biochemistry, 2015, 86, 1-4.	4.2	37
71	Molecular characterization of microbial communities in the rhizosphere soils and roots of diseased and healthy Panax notoginseng. Antonie Van Leeuwenhoek, 2015, 108, 1059-1074.	0.7	53
72	Transformation and Immobilization of Chromium by Arbuscular Mycorrhizal Fungi as Revealed by SEM–EDS, TEM–EDS, and XAFS. Environmental Science & Technology, 2015, 49, 14036-14047.	4.6	81

#	Article	IF	CITATIONS
73	Soil pollution and soil organisms: an overview of research progress and perspectives. Acta Ecologica Sinica, 2015, 35, .	0.0	1
74	Land use influences arbuscular mycorrhizal fungal communities in the farming–pastoral ecotone of northern China. New Phytologist, 2014, 204, 968-978.	3.5	157
75	Chromium resistance of dandelion (<i>Taraxacum platypecidum</i> Diels.) and bermudagrass (<i>Cynodon dactylon</i> [Linn.] Pers.) is enhanced by arbuscular mycorrhiza in Cr(VI)â€contaminated soils. Environmental Toxicology and Chemistry, 2014, 33, 2105-2113.	2.2	31
76	Six-year fertilization modifies the biodiversity of arbuscular mycorrhizal fungi in a temperate steppe in Inner Mongolia. Soil Biology and Biochemistry, 2014, 69, 371-381.	4.2	109
77	Relative importance of an arbuscular mycorrhizal fungus (Rhizophagus intraradices) and root hairs in plant drought tolerance. Mycorrhiza, 2014, 24, 595-602.	1.3	113
78	Soil organic carbon and soil structure are driving microbial abundance and community composition across the arid and semi-arid grasslands in northern China. Soil Biology and Biochemistry, 2014, 77, 51-57.	4.2	158
79	Mineral weathering and element cycling in soil-microorganism-plant system. Science China Earth Sciences, 2014, 57, 888-896.	2.3	40
80	Growth and metal uptake of energy sugarcane (Saccharum spp.) in different metal mine tailings with soil amendments. Journal of Environmental Sciences, 2014, 26, 1080-1089.	3.2	20
81	Abundance and community structure of ammonia-oxidizing <i>Archaea</i> and <i>Bacteria</i> in response to fertilization and mowing in a temperate steppe in Inner Mongolia. FEMS Microbiology Ecology, 2014, 89, 67-79.	1.3	61
82	Cellular Imaging of Cadmium in Resin Sections of Arbuscular Mycorrhizas Using Synchrotron Micro X-ray Fluorescence. Microbes and Environments, 2014, 29, 60-66.	0.7	71
83	The role of arbuscular mycorrhizal fungi in soil nitrogen cycling. Acta Ecologica Sinica, 2014, 34, .	0.0	0
84	Direct and indirect influence of arbuscular mycorrhizal fungi on abundance and community structure of ammonia oxidizing bacteria and archaea in soil microcosms. Pedobiologia, 2013, 56, 205-212.	0.5	27
85	First cloning and characterization of two functional aquaporin genes from an arbuscular mycorrhizal fungus <i>Glomus intraradices</i> . New Phytologist, 2013, 197, 617-630.	3.5	207
86	Arbuscular mycorrhizal symbiosis and active ingredients of medicinal plants: current research status and prospectives. Mycorrhiza, 2013, 23, 253-265.	1.3	118
87	Responses of ammonia-oxidizing bacteria and archaea to nitrogen fertilization and precipitation increment in a typical temperate steppe in Inner Mongolia. Applied Soil Ecology, 2013, 68, 36-45.	2.1	116
88	Aquaporin genes <i>GintAQPF1</i> and <i>GintAQPF2</i> from <i>Glomus intraradices</i> contribute to plant drought tolerance. Plant Signaling and Behavior, 2013, 8, e24030.	1.2	50
89	Arbuscular Mycorrhizal Symbiosis for Sustainable Cultivation of Chinese Medicinal Plants: A Promising Research Direction. The American Journal of Chinese Medicine, 2013, 41, 1199-1221.	1.5	8
90	Changes of AM Fungal Abundance along Environmental Gradients in the Arid and Semi-Arid Grasslands of Northern China. PLoS ONE, 2013, 8, e57593.	1.1	29

#	Article	IF	CITATIONS
91	Influences of long-term enclosure on the restoration of plant and AM fungal communities on grassland under different grazing intensities. Acta Ecologica Sinica, 2013, 33, 3383-3393.	0.0	2
92	Influences of AM fungi on plant growth and water-stable soil aggregates under drought stresses. Acta Ecologica Sinica, 2013, 33, 1080-1090.	0.0	4
93	Effects of indigenous AM fungi and neighboring plants on the growth and phosphorus nutrition of <i>Leymus chinensis</i> . Acta Ecologica Sinica, 2013, 33, 1071-1079.	0.0	1
94	Phytochelatins play a key role in arsenic accumulation and tolerance in the aquatic macrophyte Wolffia globosa. Environmental Pollution, 2012, 165, 18-24.	3.7	47
95	Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biology and Biochemistry, 2012, 46, 53-62.	4.2	280
96	Molecular basis for enhancement of plant drought tolerance by arbuscular mycorrhizal symbiosis: a mini-review. Acta Ecologica Sinica, 2012, 32, 7169-7176.	0.0	0
97	Arsenic uptake, accumulation and phytofiltration by duckweed (Spirodela polyrhiza L.). Journal of Environmental Sciences, 2011, 23, 601-606.	3.2	35
98	Chapter 8 Principles and Technologies for Remediation of Uranium-Contaminated Environments. Radioactivity in the Environment, 2009, 14, 357-374.	0.2	5
99	Arbuscular mycorrhizas contribute to phytostabilization of uranium in uranium mining tailings. Journal of Environmental Radioactivity, 2008, 99, 801-810.	0.9	38
100	Role and influence of mycorrhizal fungi on radiocesium accumulation by plants. Journal of Environmental Radioactivity, 2008, 99, 785-800.	0.9	48
101	Impact of arbuscular mycorrhizal fungi on uranium accumulation by plants. Journal of Environmental Radioactivity, 2008, 99, 775-784.	0.9	29
102	Plant growth and soil microbial community structure of legumes and grasses grown in monoculture or mixture. Journal of Environmental Sciences, 2008, 20, 1231-1237.	3.2	40
103	Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil. Environmental Pollution, 2008, 155, 174-181.	3.7	117
104	Influences of polycyclic aromatic hydrocarbons (PAHs) on soil microbial community composition with or without Vegetation. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2007, 42, 65-72.	0.9	19
105	Effects of soil moisture and plant interactions on the soil microbial community structure. European Journal of Soil Biology, 2007, 43, 31-38.	1.4	103
106	Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings. Environmental Pollution, 2007, 147, 374-380.	3.7	158
107	Effect of arbuscular mycorrhizal fungus (Glomus caledonium) on the accumulation and metabolism of atrazine in maize (Zea mays L.) and atrazine dissipation in soil. Environmental Pollution, 2007, 146, 452-457.	3.7	70
108	The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn. Science of the Total Environment, 2007, 379, 226-234.	3.9	138

#	Article	IF	CITATIONS
109	Arsenic uptake by arbuscular mycorrhizal maize (Zea mays L.) grown in an arsenic-contaminated soil with added phosphorus. Journal of Environmental Sciences, 2007, 19, 1245-1251.	3.2	48
110	Uptake of Atrazine and Cadmium from Soil by Maize (Zea maysL.) in Association with the Arbuscular Mycorrhizal FungusGlomus etunicatum. Journal of Agricultural and Food Chemistry, 2006, 54, 9377-9382.	2.4	26
111	Effects of arbuscular mycorrhizal inoculation on uranium and arsenic accumulation by Chinese brake fern (Pteris vittata L.) from a uranium mining-impacted soil. Chemosphere, 2006, 62, 1464-1473.	4.2	78
112	Arbuscular mycorrhizal fungi can alleviate the adverse effects of chlorothalonil on Oryza sativa L Chemosphere, 2006, 64, 1627-1632.	4.2	23
113	Humic Acids Increase the Phytoavailability of Cd and Pb to Wheat Plants Cultivated in Freshly Spiked, Contaminated Soil (7 pp). Journal of Soils and Sediments, 2006, 6, 236-242.	1.5	72
114	The Influence of Mycorrhiza on Uranium and Phosphorus Uptake by Barley Plants from a Field-contaminated Soil (7 pp). Environmental Science and Pollution Research, 2005, 12, 325-331.	2.7	36
115	Mycorrhiza and root hairs in barley enhance acquisition of phosphorus and uranium from phosphate rock but mycorrhiza decreases root to shoot uranium transfer. New Phytologist, 2005, 165, 591-598.	3.5	82
116	Contrasting phosphate acquisition of mycorrhizal fungi with that of root hairs using the root hairs hairless barley mutant. Plant, Cell and Environment, 2005, 28, 928-938.	2.8	90
117	Influence of the arbuscular mycorrhizal fungus Glomus mosseae on uptake of arsenate by the As hyperaccumulator fern Pteris vittata L Mycorrhiza, 2005, 15, 187-192.	1.3	127
118	Metal concentrations and mycorrhizal status of plants colonizing copper mine tailings: potential for revegetation. Science in China Series C: Life Sciences, 2005, 48, 156-164.	1.3	30
119	Arbuscular Mycorrhizal Fungi Contribute to Resistance of Upland Rice to Combined Metal Contamination of Soil. Journal of Plant Nutrition, 2005, 28, 2065-2077.	0.9	81
120	Effects of the mycorrhizal fungus Glomus intraradices on uranium uptake and accumulation by Medicago truncatula L. from uranium-contaminated soil. Plant and Soil, 2005, 275, 349-359.	1.8	37
121	Yield and arsenate uptake of arbuscular mycorrhizal tomato colonized by Glomus mosseae BEG167 in As spiked soil under glasshouse conditions. Environment International, 2005, 31, 867-873.	4.8	62
122	Effects of EDTA application and arbuscular mycorrhizal colonization on growth and zinc uptake by maize (Zea mays L.) in soil experimentally contaminated with zinc. Plant and Soil, 2004, 261, 219-229.	1.8	88
123	Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant and Soil, 2004, 261, 209-217.	1.8	198
124	Uptake of cadmium from an experimentally contaminated calcareous soil by arbuscular mycorrhizal maize (Zea mays L.). Mycorrhiza, 2004, 14, 347-354.	1.3	66
125	The role of arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc. Chemosphere, 2003, 50, 839-846.	4.2	183
126	A modified glass bead compartment cultivation system for studies on nutrient and trace metal uptake by arbuscular mycorrhiza. Chemosphere, 2001, 42, 185-192.	4.2	92