Fengshan Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3252824/publications.pdf

Version: 2024-02-01

36271 66879 7,133 152 51 78 h-index citations g-index papers 152 152 152 2696 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The chemical effects of carbon dioxide as an additive in an ethylene diffusion flame: implications for soot and NOx formation. Combustion and Flame, 2001, 125, 778-787.	2.8	341
2	Determination of the soot absorption function and thermal accommodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion flame. Combustion and Flame, 2004, 136, 180-190.	2.8	236
3	A calibration-independent laser-induced incandescence technique for soot measurement by detecting absolute light intensity. Applied Optics, 2005, 44, 6773.	2.1	209
4	Modeling laser-induced incandescence of soot: a summary and comparison of LII models. Applied Physics B: Lasers and Optics, 2007, 87, 503-521.	1.1	197
5	Numerical study on the influence of hydrogen addition on soot formation in a laminar ethylene–air diffusion flame. Combustion and Flame, 2006, 145, 324-338.	2.8	156
6	CoFlame: A refined and validated numerical algorithm for modeling sooting laminar coflow diffusion flames. Computer Physics Communications, 2016, 207, 464-477.	3.0	136
7	Fractal Dimensions and Mixing Structures of Soot Particles during Atmospheric Processing. Environmental Science and Technology Letters, 2017, 4, 487-493.	3.9	136
8	Heat conduction from a spherical nano-particle: status of modeling heat conduction in laser-induced incandescence. Applied Physics B: Lasers and Optics, 2006, 83, 355-382.	1.1	134
9	Effects of gas and soot radiation on soot formation in a coflow laminar ethylene diffusion flame. Journal of Quantitative Spectroscopy and Radiative Transfer, 2002, 73, 409-421.	1.1	127
10	Deconvolution of axisymmetric flame properties using Tikhonov regularization. Applied Optics, 2006, 45, 4638.	2.1	126
11	Effects of simultaneous hydrogen enrichment and carbon dioxide dilution of fuel on soot formation in an axisymmetric coflow laminar ethylene/air diffusion flame. Combustion and Flame, 2016, 166, 216-228.	2.8	124
12	Modeling of soot aggregate formation and size distribution in a laminar ethylene/air coflow diffusion flame with detailed PAH chemistry and an advanced sectional aerosol dynamics model. Proceedings of the Combustion Institute, 2009, 32, 761-768.	2.4	109
13	Evaluation of solution methods for radiative heat transfer in gaseous oxy-fuel combustion environments. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111, 2084-2094.	1.1	108
14	Numerical modelling of soot formation and oxidation in laminar coflow non-smoking and smoking ethylene diffusion flames. Combustion Theory and Modelling, 2003, 7, 301-315.	1.0	106
15	Calculations of gas thermal radiation transfer in one-dimensional planar enclosure using LBL and SNB models. International Journal of Heat and Mass Transfer, 2011, 54, 4736-4745.	2.5	106
16	Experimental and numerical study of soot formation in laminar coflow diffusion flames of gasoline/ethanol blends. Combustion and Flame, 2015, 162, 3925-3933.	2.8	105
17	Effects of radiation model on the modeling of a laminar coflow methane/air diffusion flame. Combustion and Flame, 2004, 138, 136-154.	2.8	103
18	An assessment of real-gas modelling in 2D enclosures. Journal of Quantitative Spectroscopy and Radiative Transfer, 2000, 64, 299-326.	1.1	101

#	Article	IF	CITATIONS
19	Influence of polydisperse distributions of both primary particle and aggregate size on soot temperature in low-fluence LII. Applied Physics B: Lasers and Optics, 2006, 83, 383-395.	1.1	100
20	Numerical and experimental study of an axisymmetric coflow laminar methane–air diffusion flame at pressures between 5 and 40 atmospheres. Combustion and Flame, 2006, 146, 456-471.	2.8	96
21	Review of recent literature on the light absorption properties of black carbon: Refractive index, mass absorption cross section, and absorption function. Aerosol Science and Technology, 2020, 54, 33-51.	1.5	96
22	Application of the statistical narrow-band correlated-k method to low-resolution spectral intensity and radiative heat transfer calculations â€" effects of the quadrature scheme. International Journal of Heat and Mass Transfer, 2000, 43, 3119-3135.	2.5	94
23	Effects of primary soot particle size distribution on the temperature of soot particles heated by a nanosecond pulsed laser in an atmospheric laminar diffusion flame. International Journal of Heat and Mass Transfer, 2006, 49, 777-788.	2.5	91
24	Clouds Over Soot Evaporation: Errors in Modeling Laser-Induced Incandescence of Soot. Journal of Heat Transfer, 2001, 123, 814-818.	1.2	90
25	An experimental and numerical study of the effects of dimethyl ether addition to fuel on polycyclic aromatic hydrocarbon and soot formation in laminar coflow ethylene/air diffusion flames. Combustion and Flame, 2011, 158, 547-563.	2.8	89
26	Numerical Solutions of Three-Dimensional Non-Grey Gas Radiative Transfer Using the Statistical Narrow-Band Model. Journal of Heat Transfer, 1999, 121, 200-203.	1.2	88
27	The flame preheating effect on numerical modelling of soot formation in a two-dimensional laminar ethylene–air diffusion flame. Combustion Theory and Modelling, 2002, 6, 173-187.	1.0	82
28	Effects of water vapor addition to the air stream on soot formation and flame properties in a laminar coflow ethylene/air diffusion flame. Combustion and Flame, 2014, 161, 1724-1734.	2.8	80
29	Numerical and experimental study of the influence of CO2 and N2 dilution on soot formation in laminar coflow C2H4/air diffusion flames at pressures between 5 and 20 atm. Combustion and Flame, 2015, 162, 2231-2247.	2.8	79
30	On the radiative properties of soot aggregates part 1: Necking and overlapping. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 162, 197-206.	1.1	78
31	Effect of hydrogen and helium addition to fuel on soot formation in an axisymmetric coflow laminar methane/air diffusion flame. International Journal of Hydrogen Energy, 2014, 39, 3936-3946.	3.8	77
32	Determination of the morphology of soot aggregates using the relative optical density method for the analysis of TEM images. Combustion and Flame, 2006, 144, 782-791.	2.8	74
33	Infrared-absorbing carbonaceous tar can dominate light absorption by marine-engine exhaust. Npj Climate and Atmospheric Science, 2019, 2, .	2.6	71
34	SPATIAL DIFFERENCING SCHEMES OF THE DISCRETE-ORDINATES METHOD. Numerical Heat Transfer, Part B: Fundamentals, 1996, 30, 23-43.	0.6	69
35	Application of the statistical narrow-band correlated-k method to non-grey gas radiation in CO2–H2O mixtures: approximate treatments of overlapping bands. Journal of Quantitative Spectroscopy and Radiative Transfer, 2001, 68, 401-417.	1.1	69
36	Simultaneous soot temperature and volume fraction measurements in axis-symmetric flames by a two-dimensional modulated absorption/emission technique. Combustion and Flame, 2015, 162, 2705-2719.	2.8	69

#	Article	IF	CITATIONS
37	Distribution of the number of primary particles of soot aggregates in a nonpremixed laminar flame. Combustion and Flame, 2004, 138, 195-198.	2.8	66
38	Effects of multiple scattering on radiative properties of soot fractal aggregates. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 133, 374-381.	1.1	66
39	A numerical study of soot aggregate formation in a laminar coflow diffusion flame. Combustion and Flame, 2009, 156, 697-705.	2.8	65
40	Comparison of LII derived soot temperature measurements withÂLII model predictions forÂsoot in aÂlaminar diffusion flame. Applied Physics B: Lasers and Optics, 2009, 96, 657-669.	1.1	63
41	On the radiative properties of soot aggregates – Part 2: Effects of coating. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 172, 134-145.	1.1	62
42	Effects of total pressure on non-grey gas radiation transfer in oxy-fuel combustion using the LBL, SNB, SNBCK, WSGG, and FSCK methods. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 172, 24-35.	1.1	60
43	Effects of primary particle diameter and aggregate size distribution on the temperature of soot particles heated by pulsed lasers. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 93, 301-312.	1.1	58
44	Laser induced incandescence measurements of soot volume fraction and effective particle size in a laminar co-annular non-premixed methane/air flame at pressures between 0.5–4.0ÂMPa. Applied Physics B: Lasers and Optics, 2006, 83, 469-475.	1.1	58
45	Experimental and numerical study of the effects of the oxygen index on the radiation characteristics of laminar coflow diffusion flames. Combustion and Flame, 2013, 160, 786-795.	2.8	58
46	Sensitivity and relative error analyses of soot temperature andÂvolume fraction determined by two-color LII. Applied Physics B: Lasers and Optics, 2009, 96, 623-636.	1.1	57
47	Investigation of the size of the incandescent incipient soot particles in premixed sooting and nucleation flames of <i>n</i> -butane using LII, HIM, and 1 nm-SMPS. Aerosol Science and Technology, 2017, 51, 916-935.	1.5	56
48	Non-grey gas radiative transfer analyses using the statistical narrow-band model. International Journal of Heat and Mass Transfer, 1998, 41, 2227-2236.	2.5	55
49	Calculations of gas radiation heat transfer in a two-dimensional rectangular enclosure using the line-by-line approach and the statistical narrow-band correlated-k model. International Journal of Thermal Sciences, 2012, 59, 66-74.	2.6	55
50	Soot temperature and volume fraction retrieval from spectrally resolved flame emission measurement in laminar axisymmetric coflow diffusion flames: Effect of self-absorption. Combustion and Flame, 2013, 160, 1693-1705.	2.8	54
51	Band Lumping Strategy for Radiation Heat Transfer Calculations Using a Narrowband Model. Journal of Thermophysics and Heat Transfer, 2000, 14, 278-281.	0.9	53
52	Effects of H2 and H preferential diffusion and unity Lewis number on superadiabatic flame temperatures in rich premixed methane flames. Combustion and Flame, 2005, 143, 264-281.	2.8	53
53	Determining aerosol particle size distributions using time-resolved laser-induced incandescence. Applied Physics B: Lasers and Optics, 2007, 87, 363-372.	1.1	53
54	A comprehensive evaluation of different radiation models in a gas turbine combustor under conditions of oxy-fuel combustion with dry recycle. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 172, 121-133.	1.1	53

#	Article	lF	CITATIONS
55	Light scattering and absorption by fractal aggregates including soot. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 217, 459-473.	1.1	53
56	An efficient approach for the implementation of the SNB based correlated-k method and its evaluation. Journal of Quantitative Spectroscopy and Radiative Transfer, 2004, 84, 465-475.	1.1	51
57	Investigation of Absorption and Scattering Properties of Soot Aggregates of Different Fractal Dimension at 532Ânm Using RDG and GMM. Aerosol Science and Technology, 2013, 47, 1393-1405.	1.5	51
58	Implementation of an advanced fixed sectional aerosol dynamics model with soot aggregate formation in a laminar methane/air coflow diffusion flame. Combustion Theory and Modelling, 2008, 12, 621-641.	1.0	50
59	Effect of aggregation on the absorption cross-section of fractal soot aggregates and its impact on LII modelling. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111, 302-308.	1.1	49
60	Effect of Drive Cycle and Gasoline Particulate Filter on the Size and Morphology of Soot Particles Emitted from a Gasoline-Direct-Injection Vehicle. Environmental Science & Emp; Technology, 2015, 49, 11950-11958.	4.6	48
61	Quantifying uncertainty in soot volume fraction estimates using Bayesian inference of auto-correlated laser-induced incandescence measurements. Applied Physics B: Lasers and Optics, 2016, 122, 1.	1.1	48
62	Impact of morphology on the radiative properties of fractal soot aggregates. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 187, 10-19.	1.1	47
63	A numerical and experimental study of a laminar sooting coflow Jet-A1 diffusion flame. Proceedings of the Combustion Institute, 2011, 33, 601-608.	2.4	45
64	FracVAL: An improved tunable algorithm of cluster–cluster aggregation for generation of fractal structures formed by polydisperse primary particles. Computer Physics Communications, 2019, 239, 225-237.	3.0	45
65	Revealing soot maturity based on multi-wavelength absorption/emission measurements in laminar axisymmetric coflow ethylene diffusion flames. Combustion and Flame, 2021, 227, 147-161.	2.8	45
66	Unified behavior of soot production and radiative heat transfer in ethylene, propane and butane axisymmetric laminar diffusion flames at different oxygen indices. Fuel, 2016, 183, 668-679.	3.4	43
67	Effects of oxygen index on soot production and temperature in an ethylene inverse diffusion flame. Experimental Thermal and Fluid Science, 2016, 73, 101-108.	1.5	42
68	Numerical study of the superadiabatic flame temperature phenomenon in hydrocarbon premixed flames. Proceedings of the Combustion Institute, 2002, 29, 1543-1550.	2.4	41
69	Investigation of Thermal Accommodation Coefficients in Time-Resolved Laser-Induced Incandescence. Journal of Heat Transfer, 2008, 130, .	1.2	40
70	Molecular dynamics simulations of translational thermal accommodation coefficients for time-resolved LII. Applied Physics B: Lasers and Optics, 2009, 94, 39-49.	1.1	40
71	Experimental and Numerical Investigations of Soot Formation in Laminar Coflow Ethylene Flames Burning in O ₂ /N ₂ and O ₂ /CO ₂ Atmospheres at Different O ₂ Mole Fractions. Energy & Different O ₂	2.5	40
72	A Numerical Investigation of Thermal Diffusion Influence on Soot Formation in Ethylene/Air Diffusion Flames. International Journal of Computational Fluid Dynamics, 2004, 18, 139-151.	0.5	35

#	Article	IF	Citations
73	Modeling of Oxidation-Driven Soot Aggregate Fragmentation in a Laminar Coflow Diffusion Flame. Combustion Science and Technology, 2010, 182, 491-504.	1.2	34
74	Measurements and modeling of laser-induced incandescence of soot at different heights in a flat premixed flame. Applied Physics B: Lasers and Optics, 2015, 118, 449-469.	1.1	31
75	Numerical investigation of the effect of signal trapping on soot measurements using LII in laminar coflow diffusion flames. Applied Physics B: Lasers and Optics, 2009, 96, 671-682.	1.1	30
76	Numerical study of soot formation in laminar coflow diffusion flames of methane doped with primary reference fuels. Combustion and Flame, 2015, 162, 1153-1163.	2.8	30
77	One-dimensional P1 method for gas radiation heat transfer in spherical geometry. International Journal of Heat and Mass Transfer, 2019, 145, 118777.	2.5	30
78	Nonlinear Enhancement of Radiative Absorption by Black Carbon in Response to Particle Mixing Structure. Geophysical Research Letters, 2021, 48, .	1.5	30
79	Numerical study of soot formation in laminar coflow methane/air diffusion flames doped by nheptane/toluene and iso-octane/toluene blends. Combustion and Flame, 2017, 180, 167-174.	2.8	29
80	Soot production modeling in a laminar coflow ethylene diffusion flame at different Oxygen Indices using a PAH-based sectional model. Fuel, 2018, 231, 404-416.	3.4	29
81	The effect of particle aggregation on the absorption and emission properties of mono- and polydisperse soot aggregates. Applied Physics B: Lasers and Optics, 2011, 104, 343-355.	1.1	28
82	Modeling DME Addition Effects to Fuel on PAH and Soot in Laminar Coflow Ethylene/Air Diffusion Flames Using Two PAH Mechanisms. Combustion Science and Technology, 2012, 184, 966-979.	1.2	28
83	Experimental assessment of the sudden-reversal of the oxygen dilution effect on soot production in coflow ethylene flames. Combustion and Flame, 2017, 183, 242-252.	2.8	28
84	In-Situ Real-Time Characterization of Particulate Emissions from a Diesel Engine Exhaust by Laser-Induced Incandescence., 2000,,.		26
85	Investigation of gas and particle radiation modelling in wet oxy-coal combustion atmospheres. International Journal of Heat and Mass Transfer, 2019, 133, 1026-1040.	2.5	26
86	Numerical study of the effects of gravity on soot formation in laminar coflow methane/air diffusion flames under different air stream velocities. Combustion Theory and Modelling, 2009, 13, 993-1023.	1.0	25
87	Assessment of several gas radiation models for radiative heat transfer calculations in a three-dimensional oxy-fuel furnace under coal-fired conditions. International Journal of Thermal Sciences, 2017, 120, 289-302.	2.6	25
88	Influence of water-vapor in oxidizer stream on the sooting behavior for laminar coflow ethylene diffusion flames. Combustion and Flame, 2019, 210, 114-125.	2.8	25
89	The impact of radiative heat transfer in combustion processes and its modeling – with a focus on turbulent flames. Fuel, 2020, 281, 118555.	3.4	25
90	Impact of the primary particle polydispersity on the radiative properties of soot aggregates. Proceedings of the Combustion Institute, 2019, 37, 1151-1159.	2.4	24

#	Article	IF	Citations
91	Effects of soot inception and condensation PAH species and fuel preheating on soot formation modeling in laminar coflow CH4/air diffusion flames doped with n-heptane/toluene mixtures. Fuel, 2019, 253, 1371-1377.	3.4	24
92	Effects of Pressure and Preheat on Super-Adiabatic Flame Temperatures in Rich Premixed Methane/Air Flames. Combustion Science and Technology, 2008, 180, 437-452.	1.2	23
93	Numerical study of the effects of pressure on soot formation in laminar coflow n-heptane/air diffusion flames between 1 and 10 atm. Proceedings of the Combustion Institute, 2015, 35, 1727-1734.	2.4	23
94	Measurement of soot volume fraction and primary particle diameter in oxygen enriched ethylene diffusion flames using the laser-induced incandescence technique. Energy, 2019, 177, 421-432.	4.5	23
95	Effects of soot absorption and scattering on LII intensities in laminar coflow diffusion flames. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109, 337-348.	1.1	21
96	Radiative Properties of Numerically Generated Fractal Soot Aggregates: The Importance of Configuration Averaging. Journal of Heat Transfer, 2010, 132, .	1.2	21
97	Soot primary particle sizing in a n-heptane doped methane/air laminar coflow diffusion flame by planar two-color TiRe-LII and TEM image analysis. Fuel, 2020, 266, 117030.	3.4	21
98	Modeling soot formation in laminar coflow ethylene inverse diffusion flames. Combustion and Flame, 2021, 232, 111513.	2.8	21
99	Quantitative measurement of volume fraction profiles of soot of different maturities in premixed flames by extinction-calibrated laser-induced incandescence. Applied Physics B: Lasers and Optics, 2019, 125, 1.	1.1	20
100	Detailed characterization of the CAPS single-scattering albedo monitor (CAPS PMssa) as a field-deployable instrument for measuring aerosol light absorption with the extinction-minus-scattering method. Atmospheric Measurement Techniques, 2021, 14, 819-851.	1,2	20
101	Some theoretical considerations in modeling laser-induced incandescence at low-pressures. Applied Physics B: Lasers and Optics, 2007, 87, 179-191.	1.1	19
102	Kinetic study of the effects of hydrogen blending to toluene reference fuel (TRF)/air mixtures on laminar burning velocity and flame structure. Fuel, 2020, 274, 117850.	3 . 4	19
103	Effects of pressure on soot formation in laminar coflow methane/air diffusion flames doped with n-heptane and toluene between 2 and 8 atm. Proceedings of the Combustion Institute, 2021, 38, 1403-1412.	2.4	17
104	The importance of thermal radiation transfer in laminar diffusion flames at normal and microgravity. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112, 1241-1249.	1.1	16
105	Evaluation of the absorption line blackbody distribution function of CO2 and H2O using the proper orthogonal decomposition and hyperbolic correlations. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 128, 27-33.	1.1	16
106	Impact of necking and overlapping on radiative properties of coated soot aggregates. Aerosol Science and Technology, 2017, 51, 532-542.	1.5	16
107	Impact of Organic Coating on Soot Angular and Spectral Scattering Properties. Environmental Science &	4.6	16
108	Control of the structure and sooting characteristics of a coflow laminar methane/air diffusion flame using a central air jet: An experimental and numerical study. Proceedings of the Combustion Institute, 2011, 33, 1063-1070.	2.4	15

#	Article	IF	Citations
109	Influence of soot aggregate size and internal multiple scattering on LII signal and the absorption function variation with wavelength determined by the TEW-LII method. Applied Physics B: Lasers and Optics, 2015, 119, 643-655.	1.1	15
110	Effects of Gravity on Soot Formation in a Coflow Laminar Methane/Air Diffusion Flame. Microgravity Science and Technology, 2010, 22, 205-214.	0.7	14
111	Quantifying uncertainty in auto-compensating laser-induced incandescence parameters due to multiple nuisance parameters. Applied Physics B: Lasers and Optics, 2017, 123, 1.	1.1	14
112	Simulation of Laser-Induced Incandescence Measurements in an Anisotropically Scattering Aerosol Through Backward Monte Carlo. Journal of Heat Transfer, 2008, 130, .	1.2	13
113	Closure between particulate matter concentrations measured ex situ by thermal–optical analysis and in situ by the CPMA–electrometer reference mass system. Aerosol Science and Technology, 2020, 54, 1293-1309.	1.5	13
114	Effects of anisotropic scattering on radiative heat transfer using the P1-approximation. International Journal of Heat and Mass Transfer, 1992, 35, 2491-2499.	2.5	12
115	Evaluation of the laminar diffusion flamelet model in the calculation of an axisymmetric coflow laminar ethylene–air diffusion flame. Combustion and Flame, 2006, 144, 605-618.	2.8	12
116	Evaluation of the Accuracy of the RDG Approximation for the Absorption and Scattering Properties of Fractal Aggregates of Flame-Generated Soot., 2008,,.		12
117	Probing the local radiative quenching during the transition from a non-smoking to a smoking laminar coflow ethylene/air non-premixed flame. Combustion and Flame, 2019, 203, 120-129.	2.8	12
118	Effects of laser fluence non-uniformity on ambient-temperature soot measurements using the auto-compensating laser-induced incandescence technique. Applied Physics B: Lasers and Optics, 2016, 122, 1.	1.1	11
119	Influence of soot aging on soot production for laminar propane diffusion flames. Fuel, 2017, 210, 472-481.	3.4	11
120	Influence of preheating and burner geometry on modeling the attachment of laminar coflow CH4/air diffusion flames. Combustion and Flame, 2018, 191, 381-393.	2.8	11
121	Radiation heat transfer calculations using the SNBCK method. , 1999, , .		10
122	A systematic numerical study of the laminar burning velocity of iso-octane/syngas/air mixtures. Chemical Engineering Science, 2019, 195, 598-608.	1.9	10
123	Flame attachment and kinetics studies of laminar coflow CO/H2 diffusion flames burning in O2/H2O. Combustion and Flame, 2018, 196, 147-159.	2.8	9
124	Horizontal Planar Angular Light Scattering (HPALS) characterization of soot produced in a laminar axisymmetric coflow ethylene diffusion flame. Combustion and Flame, 2021, 232, 111539.	2.8	9
125	Size-dependent mass absorption cross-section of soot particles from various sources. Carbon, 2022, 192, 438-451.	5.4	9
126	Relationship between soot volume fraction and LII signal in AC-LII: effect of primary soot particle diameter polydispersity. Applied Physics B: Lasers and Optics, 2013, 112, 307-319.	1.1	7

#	Article	IF	Citations
127	Spectrally resolved light extinction enhancement of coated soot particles. Atmospheric Environment, 2018, 186, 89-101.	1.9	6
128	The unsteady-state energy conservation equation for a small spherical particle in LII modeling. Applied Physics B: Lasers and Optics, 2007, 89, 115-121.	1.1	5
129	Estimate of scattering truncation in the cavity attenuated phase shift PM _{SSA} monitor using radiative transfer theory. Aerosol Science and Technology, 2018, 52, 588-596.	1.5	5
130	Effects of oxygen concentration on the thermal and chemical structures of laminar coflow CO/H2 diffusion flames burning in O2/H2O atmosphere. Fuel, 2020, 270, 117474.	3.4	5
131	Application of planar auto-compensating laser-induced incandescence to low-sooting turbulent flames and investigation of the detection gate width effect. Aerosol Science and Technology, 2021, 55, 1215-1229.	1.5	5
132	Effect of recondensation of sublimed species on nanoparticle temperature evolution in time-resolved laser-induced incandescence. Applied Physics B: Lasers and Optics, 2015, 119, 607-620.	1.1	4
133	Impact of water-vapor addition to oxidizer on the thermal radiation characteristics of non-premixed laminar coflow ethylene flames under oxygen-deficient conditions. Fire Safety Journal, 2021, 120, 103032.	1.4	4
134	An accurate efficient and flexible SNBCK-based unified band model for calculations of spectrally resolved and integrated quantities in participating media containing real-gases., 2002,,.		4
135	Nongray radiation from gas and soot mixtures in planar plates based on statistical narrow-band spectral model. Frontiers in Energy, 2011, 5, 149-158.	1.2	3
136	Effects of Detection Wavelengths on Soot Volume Fraction Measurements Using the Auto-Compensating LII Technique. Combustion Science and Technology, 2022, 194, 144-158.	1.2	3
137	Experimental assessment of the sudden-reversal of the oxygen dilution effect on soot production in coflow ethylene flames II: soot radiation and flame transition analysis. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 255, 107261.	1.1	3
138	Correction of laser-induced incandescence signal trapping in soot measurement in a microgravity boundary layer laminar diffusion flame. Proceedings of the Combustion Institute, 2021, 38, 4825-4835.	2.4	3
139	Numerical Calculations of Heat Conduction Between Soot Aggregates and the Surrounding Gas in the Free-Molecular Regime Using the DSMC Method. , 2005, , 419.		2
140	Numerical Study of Temperature and Incandescence Intensity of Nanosecond Pulsed-Laser Heated Soot Particles at High Pressures., 2005,, 355.		2
141	Structure and Soot Formation Characteristics of a Double Coflow Methane Diffusion Flame., 2006,,.		2
142	Effects of Hydrogen and Helium Addition to Fuel on Soot Formation in Axisymmetric Coflow Laminar Methane-Air Diffusion Flame., 2007,, 633.		2
143	Study of Heat Conduction between Fractal Aggregates and the Surrounding Gas in the Transition Regime Using the DSMC Method. , 2008, , .		2
144	Molecular Dynamics Simulations of Translational Thermal Accommodation Coefficients for Time-Resolved LII. , 2008, , .		2

#	Article	IF	CITATIONS
145	Experimental Observation and Numerical Modelling of a Laminar Double Coflow Methane/Air Diffusion Flame. , 2007, , 761.		1
146	Non-gray gas and soot radiation heat transfer to a spherical fuel particle in combustion scenarios. International Communications in Heat and Mass Transfer, 2021, 128, 105640.	2.9	1
147	Soot Volume Fraction Measurements by Auto-Compensating Laser-Induced Incandescence in Diffusion Flames Generated by Ethylene Pool Fire. Frontiers in Mechanical Engineering, 2021, 7, .	0.8	1
148	Modeling Transition-Regime Heat Conduction from Nanosized Particles in Laser-Induced Incandescence Studies., 2006,,.		0
149	Measurement of Thermal Accommodation Coefficients Using Laser-Induced Incandescence., 2007,, 477.		O
150	Radiative Properties of Numerically Generated Fractal Soot Aggregates: The Importance of Configuration Averaging., 2009,,.		0
151	Numerical Study of the Effects of Pressure and Gravitational Acceleration on Soot Formation in Laminar Axisymmetric Coflow Methane/Air Diffusion Flame. , 2009, , .		O
152	Numerical Study of Confined Laminar CH ₄ /Air Diffusion Flames Established in an Inverted Burner. Combustion Science and Technology, 2014, 186, 657-671.	1.2	0