
Alexander S Krupnick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3252813/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18073-18078.	3.3	348
2	Metabolites released from apoptotic cells act as tissue messengers. Nature, 2020, 580, 130-135.	13.7	266
3	Cutting Edge: Murine Vascular Endothelium Activates and Induces the Generation of Allogeneic CD4+25+Foxp3+ Regulatory T Cells. Journal of Immunology, 2005, 175, 6265-6270.	0.4	148
4	Cutting Edge: Acute Lung Allograft Rejection Is Independent of Secondary Lymphoid Organs. Journal of Immunology, 2009, 182, 3969-3973.	0.4	123
5	Intravital 2-photon imaging of leukocyte trafficking in beating heart. Journal of Clinical Investigation, 2012, 122, 2499-2508.	3.9	113
6	Bcl3 prevents acute inflammatory lung injury in mice by restraining emergency granulopoiesis. Journal of Clinical Investigation, 2011, 121, 265-276.	3.9	111
7	Emergency granulopoiesis promotes neutrophil-dendritic cell encounters that prevent mouse lung allograft acceptance. Blood, 2011, 118, 6172-6182.	0.6	108
8	Central memory CD8+ T lymphocytes mediate lung allograft acceptance. Journal of Clinical Investigation, 2014, 124, 1130-1143.	3.9	97
9	Cutting Edge: Human CD49eâ^' NK Cells Are Tissue Resident in the Liver. Journal of Immunology, 2017, 198, 1417-1422.	0.4	88
10	Resistance to natural killer cell immunosurveillance confers a selective advantage to polyclonal metastasis. Nature Cancer, 2020, 1, 709-722.	5.7	77
11	Orthotopic mouse lung transplantation as experimental methodology to study transplant and tumor biology. Nature Protocols, 2009, 4, 86-93.	5.5	68
12	Pretransplant solid organ malignancy and organ transplant candidacy: A consensus expert opinion statement. American Journal of Transplantation, 2021, 21, 460-474.	2.6	67
13	The Role of Neutrophils in Transplanted Organs. American Journal of Transplantation, 2017, 17, 328-335.	2.6	66
14	Bronchus-associated lymphoid tissue–resident Foxp3+ T lymphocytes prevent antibody-mediated lung rejection. Journal of Clinical Investigation, 2018, 129, 556-568.	3.9	60
15	CD4+ T Lymphocytes Are Not Necessary for the Acute Rejection of Vascularized Mouse Lung Transplants. Journal of Immunology, 2008, 180, 4754-4762.	0.4	58
16	Spleen-derived classical monocytes mediate lung ischemia-reperfusion injury through IL-1β. Journal of Clinical Investigation, 2018, 128, 2833-2847.	3.9	58
17	Cutting Edge: <i>Pseudomonas aeruginosa</i> Abolishes Established Lung Transplant Tolerance by Stimulating B7 Expression on Neutrophils. Journal of Immunology, 2012, 189, 4221-4225.	0.4	57
18	Neutrophil extracellular trap fragments stimulate innate immune responses that prevent lung transplant tolerance. American Journal of Transplantation, 2019, 19, 1011-1023.	2.6	53

ALEXANDER S KRUPNICK

#	Article	IF	CITATIONS
19	Selective targeting of IL-2 to NKG2D bearing cells for improved immunotherapy. Nature Communications, 2016, 7, 12878.	5.8	51
20	DAP12 Expression in Lung Macrophages Mediates Ischemia/Reperfusion Injury by Promoting Neutrophil Extravasation. Journal of Immunology, 2015, 194, 4039-4048.	0.4	48
21	Preexisting melanoma and hematological malignancies, prognosis, and timing to solid organ transplantation: A consensus expert opinion statement. American Journal of Transplantation, 2021, 21, 475-483.	2.6	45
22	Cutting Edge: MHC Class II Expression by Pulmonary Nonhematopoietic Cells Plays a Critical Role in Controlling Local Inflammatory Responses. Journal of Immunology, 2010, 185, 3809-3813.	0.4	44
23	Quantitative monitoring of mouse lung tumors by magnetic resonance imaging. Nature Protocols, 2012, 7, 128-142.	5.5	44
24	Mitochondrial damage–associated molecular patterns released by lung transplants are associated with primary graft dysfunction. American Journal of Transplantation, 2019, 19, 1464-1477.	2.6	41
25	Immunological ignorance is an enabling feature of the oligo-clonal T cell response to melanoma neoantigens. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23662-23670.	3.3	40
26	A single-center experience of 1500 lung transplant patients. Journal of Thoracic and Cardiovascular Surgery, 2018, 156, 894-905.e3.	0.4	36
27	National Cooperative Group Trials of "High-Risk―Patients With Lung Cancer: Are They Truly "High-Risk�. Annals of Thoracic Surgery, 2014, 97, 1678-1685.	0.7	33
28	Utility of mediastinoscopy in clinical stage I lung cancers at risk for occult mediastinal nodal metastases. Journal of Thoracic and Cardiovascular Surgery, 2015, 149, 35-42.e1.	0.4	29
29	Vendor-specific microbiome controls both acute and chronic murine lung allograft rejection by altering CD4+Foxp3+ regulatory T cell levels. American Journal of Transplantation, 2019, 19, 2705-2718.	2.6	25
30	Role of tertiary lymphoid organs in the regulation of immune responses in the periphery. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	24
31	Human recombinant apyrase therapy protects against canine pulmonary ischemia-reperfusion injury. Journal of Heart and Lung Transplantation, 2015, 34, 247-253.	0.3	23
32	An obligatory role for club cells in preventing obliterative bronchiolitis in lung transplants. JCI Insight, 2019, 4, .	2.3	23
33	Eosinophils downregulate lung alloimmunity by decreasing TCR signal transduction. JCI Insight, 2019, 4, .	2.3	23
34	Necroptosis triggers spatially restricted neutrophil-mediated vascular damage during lung ischemia reperfusion injury. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2111537119.	3.3	23
35	Lung transplant outcomes are influenced by severity of neutropenia and granulocyte colony-stimulating factor treatment. American Journal of Transplantation, 2020, 20, 250-261.	2.6	22
36	Eosinophils promote inducible NOS–mediated lung allograft acceptance. JCI Insight, 2017, 2, .	2.3	22

ALEXANDER S KRUPNICK

#	Article	IF	CITATIONS
37	IL-22 is required for the induction of bronchus-associated lymphoid tissue in tolerant lung allografts. American Journal of Transplantation, 2020, 20, 1251-1261.	2.6	21
38	Modulation of NKG2D, NKp46, and Ly49C/I facilitates natural killer cell-mediated control of lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11808-11813.	3.3	20
39	Adenosine A2A receptor agonist (regadenoson) in human lung transplantation. Journal of Heart and Lung Transplantation, 2020, 39, 563-570.	0.3	16
40	Lymphatic drainage from bronchus-associated lymphoid tissue in tolerant lung allografts promotes peripheral tolerance. Journal of Clinical Investigation, 2020, 130, 6718-6727.	3.9	16
41	Impact of Delayed Chest Closure on Surgical Site Infection After Lung Transplantation. Annals of Thoracic Surgery, 2017, 104, 1208-1214.	0.7	14
42	Impact of SLCO1B3 polymorphisms on clinical outcomes in lung allograft recipients receiving mycophenolic acid. Pharmacogenomics Journal, 2020, 20, 69-79.	0.9	14
43	Lung transplant immunosuppression – time for a new approach?. Expert Review of Clinical Immunology, 2014, 10, 1419-1421.	1.3	11
44	Prognostic value of lymph node ratio in patients with pathological N1 non-small cell lung cancer: a systematic review with meta-analysis. Translational Lung Cancer Research, 2016, 5, 258-264.	1.3	11
45	Deciphering the role of eosinophils in solid organ transplantation. American Journal of Transplantation, 2020, 20, 924-930.	2.6	11
46	Innate immunity in lung transplantation. Journal of Heart and Lung Transplantation, 2021, 40, 562-568.	0.3	11
47	The emerging role of regulatory T cells following lung transplantation. Immunological Reviews, 2019, 292, 194-208.	2.8	9
48	Bacterial products in donor airways prevent the induction of lung transplant tolerance. American Journal of Transplantation, 2021, 21, 353-361.	2.6	9
49	Deficiency of the adaptor protein SLy1 results in a natural killer cell ribosomopathy affecting tumor clearance. Oncolmmunology, 2016, 5, e1238543.	2.1	8
50	Naive CD4+ T Cells Carrying a TLR2 Agonist Overcome TGF-β–Mediated Tumor Immune Evasion. Journal of Immunology, 2018, 200, 847-856.	0.4	8
51	Surgical technique for lung retransplantation in the mouse. Journal of Thoracic Disease, 2013, 5, 321-5.	0.6	8
52	Ischemia reperfusion injury facilitates lung allograft acceptance through IL-33-mediated activation of donor-derived IL-5 producing group 2 innate lymphoid cells. American Journal of Transplantation, 2022, 22, 1963-1975.	2.6	8
53	Targeting of IL-2 to cytotoxic lymphocytes as an improved method of cytokine-driven immunotherapy. Oncolmmunology, 2017, 6, e1265721.	2.1	7
54	Pulmonary malakoplakia secondary to Rhodococcus equi infection mimicking a lung neoplasm in a lung transplant recipient. American Journal of Transplantation, 2019, 19, 597-600.	2.6	7

#	Article	IF	CITATIONS
55	The Impact of the American Association for Thoracic Surgery on National Institutes of Health Grant Funding for Cardiothoracic Surgeons. Journal of Thoracic and Cardiovascular Surgery, 2021, , .	0.4	7
56	Retargeting IL-2 Signaling to NKG2D-Expressing Tumor-Infiltrating Leukocytes Improves Adoptive Transfer Immunotherapy. Journal of Immunology, 2021, 207, 333-343.	0.4	5
57	Updated Views on Neutrophil Responses in Ischemia–Reperfusion Injury. Transplantation, 2022, 106, 2314-2324.	0.5	5
58	The feasibility of diaphragmatic transplantation as potential therapy for treatment of respiratory failure associated with Duchenne muscular dystrophy: Acute canine model. Journal of Thoracic and Cardiovascular Surgery, 2008, 135, 1398-1399.e1.	0.4	4
59	Recent Advances and Future Perspectives in the Management of Lung Cancer. Current Problems in Surgery, 2005, 42, 548-610.	0.6	3
60	There and back again: An immunotherapy tale. Journal of Thoracic and Cardiovascular Surgery, 2018, 155, 1771-1774.	0.4	3
61	Poor Performance Flagging Is Associated With Fewer Transplantations at Centers Flagged Multiple Times. Annals of Thoracic Surgery, 2019, 107, 1678-1682.	0.7	3
62	A reengineered common chain cytokine augments CD8+ T cell–dependent immunotherapy. JCI Insight, 2022, 7, .	2.3	2
63	Optimal venous drainage for the pulmonary allograft: The search goes on. Journal of Thoracic and Cardiovascular Surgery, 2016, 152, e13-e14.	0.4	1
64	What are the indications for pectus excavatum repair at the time of congenital cardiac surgery: Separating theory from reality. Journal of Thoracic and Cardiovascular Surgery, 2016, 151, e69-e70.	0.4	1
65	How low can you go?. Journal of Thoracic and Cardiovascular Surgery, 2018, 156, 892-893.	0.4	1
66	Commentary: Double-negative T cells in the injured lung—evils or angels?. Journal of Thoracic and Cardiovascular Surgery, 2021, 161, e91.	0.4	1
67	Commentary: †Tis the season to filter your perfusate. Journal of Thoracic and Cardiovascular Surgery, 2021, 161, e127-e128.	0.4	1
68	Necessity is the mother of invention: Alternative techniques in living-related lobar transplantation come to the mainstream. Journal of Thoracic and Cardiovascular Surgery, 2017, 153, 487.	0.4	0
69	Size does really matter. Journal of Thoracic and Cardiovascular Surgery, 2018, 155, 1880-1881.	0.4	Ο
70	To bleed or not to bleed? That is the question. Journal of Thoracic and Cardiovascular Surgery, 2018, 155, 436-437.	0.4	0
71	Commentary: Antifibrotic agents in the postoperative period: Friends or foes?. Journal of Thoracic and Cardiovascular Surgery, 2019, 158, 297-298.	0.4	0
72	Some things are better in the upside down. Journal of Thoracic and Cardiovascular Surgery, 2019, 157, 423-424.	0.4	0

#	Article	IF	CITATIONS
73	Commentary: The unknown fact about surfactant. Journal of Thoracic and Cardiovascular Surgery, 2019, 157, 2118.	0.4	0
74	Transsternal Transpericardial Bronchopleural Fistula Repair. Operative Techniques in Thoracic and Cardiovascular Surgery, 2020, 25, 250-260.	0.2	0
75	Loss of Stromal Cell Thy-1 Plays a Critical Role in Lipopolysaccharide Induced Chronic Lung Allograft Dysfunction. Journal of Heart and Lung Transplantation, 2022, , .	0.3	0