Bohumil Sak ## List of Publications by Year in descending order Source: https://exaly.com/author-pdf/3252433/publications.pdf Version: 2024-02-01 94 papers 2,620 citations 32 h-index 223800 46 g-index 94 all docs 94 docs citations times ranked 94 1233 citing authors | # | Article | IF | CITATIONS | |----------------------|---|--------------------------|--| | 1 | Encephalitozoon cuniculi and Extraintestinal Microsporidiosis in Bird Owners. Emerging Infectious Diseases, 2022, 28, 705-708. | 4.3 | O | | 2 | Chronic Infections in Mammals Due to Microsporidia. Experientia Supplementum (2012), 2022, 114, 319-371. | 0.9 | 2 | | 3 | Comparison of the Concentration of Encephalitozoon cuniculi Genotypes I and III in Inflammatory Foci Under Experimental Conditions. Journal of Inflammation Research, 2022, Volume 15, 2721-2730. | 3.5 | 4 | | 4 | <i>Cryptosporidium ratti</i> n. sp. (Apicomplexa: Cryptosporidiidae) and genetic diversity of <i>Cryptosporidium</i> spp. in brown rats (<i>Rattus norvegicus</i>) in the Czech Republic. Parasitology, 2021, 148, 84-97. | 1.5 | 24 | | 5 | Occurrence and genetic diversity of Cryptosporidium spp. in wild foxes, wolves, jackals, and bears in central Europe. Folia Parasitologica, 2021, 68, . | 1.3 | 9 | | 6 | Intestinal parasites of dogs (<i>Canis lupus familiaris</i>) in Svalbard (Norway): low prevalence and limited transmission with wildlife. Canadian Journal of Zoology, 2021, 99, 249-255. | 1.0 | 2 | | 7 | The course of infection of Encephalitozoon cuniculi genotype I in mice possess combination of features reported in genotypes II and III. Experimental Parasitology, 2021, 224, 108101. | 1.2 | 3 | | 8 | Sparse Evidence for Giardia intestinalis, Cryptosporidium spp. and Microsporidia Infections in Humans, Domesticated Animals and Wild Nonhuman Primates Sharing a Farm–Forest Mosaic Landscape in Western Uganda. Pathogens, 2021, 10, 933. | 2.8 | 1 | | 9 | Cryptosporidium sciurinum n. sp. (Apicomplexa: Cryptosporidiidae) in Eurasian Red Squirrels (Sciurus) Tj ETQq1 1 | 0,784314 | rgBT /Overlo | | | | | | | 10 | Raw Goat's Milk, Fresh and Soft Cheeses as a Potential Source of <i>Encephalitozoon cuniculi</i> Foodborne Pathogens and Disease, 2021, 18, 661-667. | 1.8 | 2 | | 10 | | 1.8 | 2 | | | Foodborne Pathogens and Disease, 2021, 18, 661-667. A massive systematic infection of Encephalitozoon cuniculi genotype III in mice does not cause clinical | | | | 11 | Foodborne Pathogens and Disease, 2021, 18, 661-667. A massive systematic infection of Encephalitozoon cuniculi genotype III in mice does not cause clinical signs. Microbes and Infection, 2020, 22, 467-473. <p>Encephalitozoon cuniculi Genotype II Concentrates in Inflammation</p> | 1.9 | 2 | | 11 12 | Foodborne Pathogens and Disease, 2021, 18, 661-667. A massive systematic infection of Encephalitozoon cuniculi genotype III in mice does not cause clinical signs. Microbes and Infection, 2020, 22, 467-473. <p>Encephalitozoon cuniculi Genotype II Concentrates in Inflammation Foci</p> . Journal of Inflammation Research, 2020, Volume 13, 583-593. Description of Cryptosporidium ornithophilus n. sp. (Apicomplexa: Cryptosporidiidae) in farmed | 1.9
3.5 | 5 | | 11
12
13 | A massive systematic infection of Encephalitozoon cuniculi genotype III in mice does not cause clinical signs. Microbes and Infection, 2020, 22, 467-473. <p>Encephalitozoon cuniculi Genotype II Concentrates in Inflammation Foci</p> . Journal of Inflammation Research, 2020, Volume 13, 583-593. Description of Cryptosporidium ornithophilus n. sp. (Apicomplexa: Cryptosporidiidae) in farmed ostriches. Parasites and Vectors, 2020, 13, 340. A chicken embryo model for the maintenance and amplification of Cryptosporidium parvum and | 1.9
3.5
2.5 | 2535 | | 11
12
13 | Foodborne Pathogens and Disease, 2021, 18, 661-667. A massive systematic infection of Encephalitozoon cuniculi genotype III in mice does not cause clinical signs. Microbes and Infection, 2020, 22, 467-473. <p>Encephalitozoon cuniculi Genotype II Concentrates in Inflammation Foci</p> . Journal of Inflammation Research, 2020, Volume 13, 583-593. Description of Cryptosporidium ornithophilus n. sp. (Apicomplexa: Cryptosporididae) in farmed ostriches. Parasites and Vectors, 2020, 13, 340. A chicken embryo model for the maintenance and amplification of Cryptosporidium parvum and Cryptosporidium baileyi oocysts. European Journal of Protistology, 2020, 75, 125718. Encephalitozoon cuniculi Genotype III Evinces a Resistance to Albendazole Treatment in both | 1.9
3.5
2.5
1.5 | 2
5
35 | | 11
12
13
14 | Foodborne Pathogens and Disease, 2021, 18, 661-667. A massive systematic infection of Encephalitozoon cuniculi genotype III in mice does not cause clinical signs. Microbes and Infection, 2020, 22, 467-473. & It;p>&Item>Encephalitozoon cuniculi&It/em> Genotype II Concentrates in Inflammation Foci&It/p>. Journal of Inflammation Research, 2020, Volume 13, 583-593. Description of Cryptosporidium ornithophilus n. sp. (Apicomplexa: Cryptosporididae) in farmed ostriches. Parasites and Vectors, 2020, 13, 340. A chicken embryo model for the maintenance and amplification of Cryptosporidium parvum and Cryptosporidium baileyi oocysts. European Journal of Protistology, 2020, 75, 125718. Encephalitozoon cuniculi Genotype III Evinces a Resistance to Albendazole Treatment in both Immunodeficient and Immunocompetent Mice. Antimicrobial Agents and Chemotherapy, 2020, 64, . The opportunistic pathogen Encephalitozoon cuniculi in wild living Murinae and Arvicolinae in | 1.9
3.5
2.5
1.5 | 2
5
35
1 | | # | Article | ΙF | Citations | |----|--|-----|-----------| | 19 | Dual infection of urinary tract with and in HIV/AIDS patients. Annals of Parasitology, 2019, 65, 77-81. | 0.1 | 5 | | 20 | Disseminated Infection of Encephalitozoon cuniculi Associated With Osteolysis of Hip Periprosthetic Tissue. Clinical Infectious Diseases, 2018, 67, 1228-1234. | 5.8 | 14 | | 21 | Cryptosporidium apodemi sp. n. and Cryptosporidium ditrichi sp. n. (Apicomplexa: Cryptosporidiidae) in Apodemus spp European Journal of Protistology, 2018, 63, 1-12. | 1.5 | 56 | | 22 | Cryptosporidium occultus sp. n. (Apicomplexa: Cryptosporidiidae) in rats. European Journal of Protistology, 2018, 63, 96-104. | 1.5 | 46 | | 23 | Effect of Piper betle on Giardia intestinalis infection inÂvivo. Experimental Parasitology, 2018, 184, 39-45. | 1.2 | 13 | | 24 | Evidence of transplacental transmission of Encephalitozoon cuniculi genotype II in murine model. Experimental Parasitology, 2018, 193, 51-57. | 1.2 | 6 | | 25 | The course of experimental giardiasis in Mongolian gerbil. Parasitology Research, 2018, 117, 2437-2443. | 1.6 | 7 | | 26 | Host specificity and age-dependent resistance to Cryptosporidium avium infection in chickens, ducks and pheasants. Experimental Parasitology, 2018, 191, 62-65. | 1.2 | 11 | | 27 | Respiratory microsporidiosis caused by Enterocytozoon bieneusi in an HIV-negative hematopoietic stem cell transplant recipient. International Journal of Infectious Diseases, 2018, 77, 26-28. | 3.3 | 8 | | 28 | Differences in the intensity of infection caused by Encephalitozoon cuniculi genotype II and III - Comparison using quantitative real-time PCR. Experimental Parasitology, 2018, 192, 93-97. | 1.2 | 8 | | 29 | Limitations in the screening of potentially anti-cryptosporidial agents using laboratory rodents with gastric cryptosporidiosis. Folia Parasitologica, 2018, 65, . | 1.3 | 0 | | 30 | First description of Cryptosporidium ubiquitum XIIa subtype family in farmed fur animals. European Journal of Protistology, 2017, 59, 108-113. | 1.5 | 15 | | 31 | The course of infection caused by Encephalitozoon cuniculi genotype III in immunocompetent and immunodeficient mice. Experimental Parasitology, 2017, 182, 16-21. | 1.2 | 11 | | 32 | Native and introduced squirrels in Italy host different Cryptosporidium spp European Journal of Protistology, 2017, 61, 64-75. | 1.5 | 26 | | 33 | Limited effect of adaptive immune response to control encephalitozoonosis. Parasite Immunology, 2017, 39, e12496. | 1.5 | 15 | | 34 | Zoonotic microsporidia in dogs and cats in Poland. Veterinary Parasitology, 2017, 246, 108-111. | 1.8 | 34 | | 35 | Effects of selected Indonesian plant extracts on E.Âcuniculi infection inÂvivo. Experimental Parasitology, 2017, 181, 94-101. | 1.2 | 8 | | 36 | Stray cats are more frequently infected with zoonotic protists than pet cats. Folia Parasitologica, 2017, 64, . | 1.3 | 19 | | # | Article | IF | CITATIONS | |----|--|------------|--------------| | 37 | More than a rabbit's tale – Encephalitozoon spp. in wild mammals and birds. International Journal for Parasitology: Parasites and Wildlife, 2016, 5, 76-87. | 1.5 | 54 | | 38 | Statistical comparison of excystation methods in Cryptosporidium parvum oocysts. Veterinary Parasitology, 2016, 230, 1-5. | 1.8 | 14 | | 39 | Cryptosporidium parvum and Enterocytozoon bieneusi in American Mustangs and Chincoteague ponies. Experimental Parasitology, 2016, 162, 24-27. | 1.2 | 24 | | 40 | Prevalence and molecular characteristics of urinary and intestinal microsporidia infections in renal transplant recipients. Clinical Microbiology and Infection, 2016, 22, 462.e5-462.e9. | 6.0 | 24 | | 41 | Encephalitozoon cuniculi in Raw Cow's Milk Remains Infectious After Pasteurization. Foodborne Pathogens and Disease, 2016, 13, 77-79. | 1.8 | 10 | | 42 | Cryptosporidium proliferans n. sp. (Apicomplexa: Cryptosporidiidae): Molecular and Biological Evidence of Cryptic Species within Gastric Cryptosporidium of Mammals. PLoS ONE, 2016, 11, e0147090. | 2.5 | 68 | | 43 | Prevalence of Cryptosporidium spp., Enterocytozoon bieneusi, Encephalitozoon spp. and Giardia intestinalis in Wild, Semi-Wild and Captive Orangutans (Pongo abelii and Pongo pygmaeus) on Sumatra and Borneo, Indonesia. PLoS ONE, 2016, 11, e0152771. | 2.5 | 36 | | 44 | Cryptosporidium ubiquitum, C. muris and Cryptosporidium deer genotype in wild cervids and caprines in the Czech Republic. Folia Parasitologica, 2016, 63, . | 1.3 | 22 | | 45 | Diversity of Enterocytozoon bieneusi genotypes among small rodents in southwestern Poland.
Veterinary Parasitology, 2015, 214, 242-246. | 1.8 | 29 | | 46 | Microsporidia and Cryptosporidium in horses and donkeys in Algeria: Detection of a novel Cryptosporidium hominis subtype family (Ik) in a horse. Veterinary Parasitology, 2015, 208, 135-142. | 1.8 | 69 | | 47 | Diversity of Microsporidia, Cryptosporidium and Giardia in Mountain Gorillas (Gorilla beringei) Tj ETQq1 1 0.784 | 314 rgBT / | Overlock 10 | | 48 | Concurrent Infection of the Urinary Tract with Encephalitozoon cuniculi and Enterocytozoon bieneusi in a Renal Transplant Recipient. Journal of Clinical Microbiology, 2014, 52, 1780-1782. | 3.9 | 34 | | 49 | Prevalence and diversity of Encephalitozoon spp. and Enterocytozoon bieneusi in wild boars (Sus) Tj ETQq $1\ 1\ 0$. | 784314 rş | gBT/Overlock | | 50 | Lethal Encephalitozoon cuniculi genotype III infection in Steppe lemmings (Lagurus lagurus).
Veterinary Parasitology, 2014, 205, 357-360. | 1.8 | 18 | | 51 | Age related susceptibility of pigs to Cryptosporidium scrofarum infection. Veterinary Parasitology, 2014, 202, 330-334. | 1.8 | 12 | | 52 | Life cycle of Cryptosporidium murisin two rodents with different responses to parasitization. Parasitology, 2014, 141, 287-303. | 1.5 | 17 | | 53 | Occurrence of Cryptosporidium suis and Cryptosporidium scrofarum on commercial swine farms in the Czech Republic and its associations with age and husbandry practices. Parasitology Research, 2013, 112, 1143-1154. | 1.6 | 37 | | 54 | Cryptosporidium scrofarum n. sp. (Apicomplexa: Cryptosporidiidae) in domestic pigs (Sus scrofa). Veterinary Parasitology, 2013, 191, 218-227. | 1.8 | 76 | | # | Article | IF | Citations | |----|---|-------------------|--------------| | 55 | The Lesser Egyptian Gerbil (Gerbillus gerbillus) is a suitable host for the long-term propagation of Cryptosporidium andersoni. Experimental Parasitology, 2013, 134, 438-442. | 1.2 | 3 | | 56 | Equine cryptosporidial infection associated with Cryptosporidium hedgehog genotype in Algeria. Veterinary Parasitology, 2013, 197, 350-353. | 1.8 | 28 | | 57 | Humoral immune response and spreading of Encephalitozoon cuniculi infection in experimentally infected ponies. Veterinary Parasitology, 2013, 197, 1-6. | 1.8 | 15 | | 58 | Cryptosporidium suis and Cryptosporidium scrofarum in Eurasian wild boars (Sus scrofa) in Central Europe. Veterinary Parasitology, 2013, 197, 504-508. | 1.8 | 20 | | 59 | Extremely Reduced Levels of Heterozygosity in the Vertebrate Pathogen Encephalitozoon cuniculi. Eukaryotic Cell, 2013, 12, 496-502. | 3.4 | 44 | | 60 | Long-Term Monitoring of Microsporidia, Cryptosporidium and Giardia Infections in Western Lowland
Gorillas (Gorilla gorilla gorilla) at Different Stages of Habituation in Dzanga Sangha Protected
Areas, Central African Republic. PLoS ONE, 2013, 8, e71840. | 2.5 | 73 | | 61 | Latent Microsporidiosis Caused by Encephalitozoon cuniculi in Immunocompetent Hosts: A Murine Model Demonstrating the Ineffectiveness of the Immune System and Treatment with Albendazole. PLoS ONE, 2013, 8, e60941. | 2.5 | 58 | | 62 | Occurrence of microsporidia as emerging pathogens in Slovak Roma children and their impact on public health. Annals of Agricultural and Environmental Medicine, 2013, 20, 695-8. | 1.0 | 18 | | 63 | Enterocytozoon bieneusi and Encephalitozoon cuniculi in horses kept under different management systems in the Czech Republic. Veterinary Parasitology, 2012, 190, 573-577. | 1.8 | 47 | | 64 | Cryptosporidium tyzzeri and Cryptosporidium muris originated from wild West-European house mice (Mus musculus domesticus) and East-European house mice (Mus musculus musculus) are non-infectious for pigs. Experimental Parasitology, 2012, 131, 107-110. | 1.2 | 24 | | 65 | The first report on Cryptosporidium suis and Cryptosporidium pig genotype II in Eurasian wild boars (Sus scrofa) (Czech Republic). Veterinary Parasitology, 2012, 184, 122-125. | 1.8 | 25 | | 66 | Activated CD8+ T cells contribute to clearance of gastric <i>Cryptosporidium muris</i> infections. Parasite Immunology, 2011, 33, 210-216. | 1.5 | 12 | | 67 | New view on the age-specificity of pig Cryptosporidium by species-specific primers for distinguishing Cryptosporidium suis and Cryptosporidium pig genotype II. Veterinary Parasitology, 2011, 176, 120-125. | 1.8 | 34 | | 68 | Molecular characterization of Cryptosporidium spp. in pre-weaned dairy calves in the Czech Republic: Absence of C. ryanae and management-associated distribution of C. andersoni, C. bovis and C. parvum subtypes. Veterinary Parasitology, 2011, 177, 378-382. | 1.8 | 41 | | 69 | The first report on natural Enterocytozoon bieneusi and Encephalitozoon spp. infections in wild East-European House Mice (Mus musculus musculus) and West-European House Mice (M. m.) Tj ETQq1 1 0.784 2011. 178, 246-250. | 314.rgBT /
1.8 | /Overlock 10 | | 70 | Unapparent Microsporidial Infection among Immunocompetent Humans in the Czech Republic. Journal of Clinical Microbiology, 2011, 49, 1064-1070. | 3.9 | 129 | | 71 | Encephalitozoon cuniculi Genotype I as a Causative Agent of Brain Abscess in an Immunocompetent Patient. Journal of Clinical Microbiology, 2011, 49, 2769-2771. | 3.9 | 28 | | 72 | Latent Microsporidial Infection in Immunocompetent Individuals – A Longitudinal Study. PLoS
Neglected Tropical Diseases, 2011, 5, e1162. | 3.0 | 104 | | # | Article | IF | CITATIONS | |----|--|-----|-----------| | 73 | Diversity of microsporidia (Fungi: Microsporidia) among captive great apes in European zoos and African sanctuaries: evidence for zoonotic transmission?. Folia Parasitologica, 2011, 58, 81-86. | 1.3 | 34 | | 74 | Activation of protective cell-mediated immune response in gastric mucosa during Cryptosporidium muris infection and re-infection in immunocompetent mice. Parasitology Research, 2010, 106, 1159-1166. | 1.6 | 12 | | 75 | Microsporidia in exotic birds: Intermittent spore excretion of Encephalitozoon spp. in naturally infected budgerigars (Melopsittacus undulatus). Veterinary Parasitology, 2010, 168, 196-200. | 1.8 | 37 | | 76 | Seropositivity for <i>Enterocytozoon bieneusi</i> , Czech Republic. Emerging Infectious Diseases, 2010, 16, 335-337. | 4.3 | 16 | | 77 | <i>Cryptosporidium</i> Pig Genotype II in Immunocompetent Man. Emerging Infectious Diseases, 2009, 15, 982-983. | 4.3 | 80 | | 78 | Molecular characterization of Cryptosporidium isolates from pigs at slaughterhouses in South Bohemia, Czech Republic. Parasitology Research, 2009, 104, 425-428. | 1.6 | 43 | | 79 | Prevalence and age-related infection of Cryptosporidium suis, C. muris and Cryptosporidium pig genotype II in pigs on a farm complex in the Czech Republic. Veterinary Parasitology, 2009, 160, 319-322. | 1.8 | 61 | | 80 | Infectivity of gastric and intestinal Cryptosporidium species in immunocompetent Mongolian gerbils (Meriones unguiculatus). Veterinary Parasitology, 2009, 163, 33-38. | 1.8 | 13 | | 81 | Sources of potentially infectious human microsporidia: Molecular characterisation of microsporidia isolates from exotic birds in the Czech Republic, prevalence study and importance of birds in epidemiology of the human microsporidial infections. Veterinary Parasitology, 2009, 165, 125-130. | 1.8 | 63 | | 82 | Prevalence and molecular characterization of Cryptosporidium spp. in dairy cattle in South Bohemia, the Czech Republic. Veterinary Parasitology, 2009, 165, 141-144. | 1.8 | 26 | | 83 | <i>Cryptosporidium</i> Pig Genotype II in Immunocompetent Man. Emerging Infectious Diseases, 2009, 15, 982-983. | 4.3 | 46 | | 84 | Infectivity, pathogenicity, and genetic characteristics of mammalian gastric Cryptosporidium spp. in domestic ruminants. Veterinary Parasitology, 2008, 153, 363-367. | 1.8 | 38 | | 85 | First report of Enterocytozoon bieneusi infection on a pig farm in the Czech Republic. Veterinary Parasitology, 2008, 153, 220-224. | 1.8 | 73 | | 86 | Infectivity and pathogenicity of Cryptosporidium andersoni to a novel host, southern multimammate mouse (Mastomys coucha). Veterinary Parasitology, 2007, 143, 229-233. | 1.8 | 38 | | 87 | Detection of Encephalitozoon cuniculi in a new host—cockateel (Nymphicus hollandicus) using molecular methods. Parasitology Research, 2007, 101, 1685-1688. | 1.6 | 17 | | 88 | Effects of interferon gamma and specific polyclonal antibody on the infection of murine peritoneal macrophages and murine macrophage cell line PMJ2-R with Encephalitozoon cuniculi. Folia Parasitologica, 2007, 54, 172-176. | 1.3 | 10 | | 89 | Prevalence and Pathogenicity of Cryptosporidium suis in Pre- and Post-weaned Pigs. Zoonoses and Public Health, 2006, 53, 239-243. | 1.4 | 45 | | 90 | Antibodies enhance the protective effect of CD4+ T lymphocytes in SCID mice perorally infected with Encephalitozoon cuniculi. Parasite Immunology, 2006, 28, 95-99. | 1.5 | 20 | | # | Article | IF | CITATION | |----|--|-----|----------| | 91 | Pure CD4+ T lymphocytes fail to protect perorally infected SCID mice from lethal microsporidiosis caused by Encephalitozoon cuniculi. Parasitology Research, 2006, 99, 682-686. | 1.6 | 20 | | 92 | Humoral intestinal immunity against Encephalitozoon cuniculi (Microsporidia) infection in mice. Folia Parasitologica, 2005, 52, 158-162. | 1.3 | 13 | | 93 | Effects of a novel anti-exospore monoclonal antibody on microsporidial development in vitro. Parasitology Research, 2004, 92, 74-80. | 1.6 | 13 | | 94 | Susceptibility of IFN-13 or IL-12 knock-out and SCID mice to infection with two microsporidian species, Encephalitozoon cuniculi and E. intestinalis. Folia Parasitologica, 2004, 51, 275-282. | 1.3 | 35 |