
Lee R Johnson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3252408/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stabilization of Polyoxometalate Charge Carriers via Redoxâ€Driven Nanoconfinement in Singleâ€Walled Carbon Nanotubes. Angewandte Chemie - International Edition, 2022, 61, e202115619.	7.2	35
2	Stabilization of Polyoxometalate Charge Carriers via Redoxâ€Driven Nanoconfinement in Singleâ€Walled Carbon Nanotubes. Angewandte Chemie, 2022, 134, .	1.6	1
3	Singlet oxygen and dioxygen bond cleavage in the aprotic lithium-oxygen battery. Joule, 2022, 6, 185-192.	11.7	41
4	Understanding the Behaviour of High-Nickel NMC Cathodes with Respect to the Vinylene Carbonate Additive. ECS Meeting Abstracts, 2022, MA2022-01, 332-332.	0.0	0
5	Molecular redox species for next-generation batteries. Chemical Society Reviews, 2021, 50, 5863-5883.	18.7	53
6	2021 roadmap on lithium sulfur batteries. JPhys Energy, 2021, 3, 031501.	2.3	74
7	Sustainability of Battery Technologies: Today and Tomorrow. ACS Sustainable Chemistry and Engineering, 2021, 9, 6507-6509.	3.2	16
8	Critical Role of the Interphase at Magnesium Electrodes in Chloride-Free, Simple Salt Electrolytes. ACS Applied Materials & Interfaces, 2021, 13, 29708-29713.	4.0	11
9	Electrochemistry of redox-active molecules confined within narrow carbon nanotubes. Chemical Society Reviews, 2021, 50, 10895-10916.	18.7	20
10	The Interface between Li6.5La3Zr1.5Ta0.5O12 and Liquid Electrolyte. Joule, 2020, 4, 101-108.	11.7	81
11	Lithium–Oxygen Batteries and Related Systems: Potential, Status, and Future. Chemical Reviews, 2020, 120, 6626-6683.	23.0	593
12	Oxygen Reduction Pathways in the Li-O2 Battery: Understanding Solvent-Water Interactions. ECS Meeting Abstracts, 2020, MA2020-02, 492-492.	0.0	0
13	(Invited) The Role of Electrolyte Solution in Next-Generation Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 742-742.	0.0	0
14	Electrolyte-Dependent SEI Formation and Its Consequences on Mg Electrode Cycling. ECS Meeting Abstracts, 2020, MA2020-02, 787-787.	0.0	0
15	The Sodium-Ion Battery: Effect of Electrolyte Additives on the SEI Layer of Hard Carbon Anodes. ECS Meeting Abstracts, 2020, MA2020-02, 767-767.	0.0	1
16	(Invited) Interfaces in Solid-State Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 3779-3779.	0.0	0
17	The Rechargeable Aprotic Lithium-Oxygen Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
18	Kinetics of lithium peroxide oxidation by redox mediators and consequences for the lithium–oxygen cell. Nature Communications, 2018, 9, 767.	5.8	93

Lee R Johnson

#	Article	IF	CITATIONS
19	High capacity surface route discharge at the potassium-O2 electrode. Journal of Electroanalytical Chemistry, 2018, 819, 542-546.	1.9	21
20	The Role of the Electrode Surface in Na–Air Batteries: Insights in Electrochemical Product Formation and Chemical Growth of NaO ₂ . Advanced Energy Materials, 2018, 8, 1701581.	10.2	28
21	The Rechargeable Aprotic Lithium-oxygen Battery. ECS Meeting Abstracts, 2018, , .	0.0	0
22	Phenolâ€Catalyzed Discharge in the Aprotic Lithiumâ€Oxygen Battery. Angewandte Chemie - International Edition, 2017, 56, 6539-6543.	7.2	55
23	LiO ₂ : Cryosynthesis and Chemical/Electrochemical Reactivities. Journal of Physical Chemistry Letters, 2017, 8, 2334-2338.	2.1	70
24	Phenol atalyzed Discharge in the Aprotic Lithiumâ€Oxygen Battery. Angewandte Chemie, 2017, 129, 6639-6643.	1.6	24
25	Understanding of the Electrogenerated Bulk Electrolyte Species in Sodium-Containing Ionic Liquid Electrolytes During the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2017, 121, 23307-23316.	1.5	17
26	A rechargeable lithium–oxygen battery with dual mediators stabilizing the carbon cathode. Nature Energy, 2017, 2, .	19.8	238
27	Role of Electrolyte Anions in the Na–O ₂ Battery: Implications for NaO ₂ Solvation and the Stability of the Sodium Solid Electrolyte Interphase in Glyme Ethers. Chemistry of Materials, 2017, 29, 6066-6075.	3.2	141
28	Promoting solution phase discharge in Li–O2 batteries containing weakly solvating electrolyteÂsolutions. Nature Materials, 2016, 15, 882-888.	13.3	446
29	High Capacity Na–O ₂ Batteries: Key Parameters for Solution-Mediated Discharge. Journal of Physical Chemistry C, 2016, 120, 20068-20076.	1.5	96
30	A Comprehensive Model for Non-Aqueous Lithium Air Batteries Involving Different Reaction Mechanisms. Journal of the Electrochemical Society, 2015, 162, A614-A621.	1.3	72
31	The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li–O2 batteries. Nature Chemistry, 2014, 6, 1091-1099.	6.6	942
32	Aprotic Li–O ₂ Battery: Influence of Complexing Agents on Oxygen Reduction in an Aprotic Solvent. Journal of Physical Chemistry C, 2014, 118, 3393-3401.	1.5	36
33	Sulfone-Based Electrolytes for Nonaqueous Li–O ₂ Batteries. Journal of Physical Chemistry C, 2014, 118, 18892-18898.	1.5	50
34	Electrocatalytic oxidation of methanol and carbon monoxide at platinum in protic ionic liquids. Electrochemistry Communications, 2012, 23, 122-124.	2.3	26
35	Tip generation–substrate collection–tip collection mode scanning electrochemical microscopy of oxygen reduction electrocatalysts. Journal of Electroanalytical Chemistry, 2012, 682, 45-52.	1.9	24
36	Hydrogen Oxidation and Oxygen Reduction at Platinum in Protic Ionic Liquids. Journal of Physical Chemistry C, 2012, 116, 18048-18056.	1.5	49

Lee R Johnson

#	Article	IF	CITATIONS
37	Deposition of silver nanobowl arrays using polystyrene nanospheres both as reagents and as the templating material. Journal of Materials Chemistry, 2011, 21, 7555.	6.7	13
38	Synthesis of carbon-supported Pt nanoparticle electrocatalysts using nanocrystalline cellulose as reducing agent. Green Chemistry, 2011, 13, 1686.	4.6	87
39	Scanning electrochemical microscopy at thermal sprayed anti-corrosion coatings: Effect of thermal spraying on heterogeneous electron transfer kinetics. Journal of Electroanalytical Chemistry, 2011, 657, 46-53.	1.9	11
40	Nanocomposite oxygen reduction electrocatalysts formed using bioderived reducing agents. Journal of Materials Chemistry, 2010, 20, 1737.	6.7	33
41	Synthesis of platinum nanoparticles using cellulosic reducing agents. Green Chemistry, 2010, 12, 220-222.	4.6	89
42	Mechanism of the Reactions of Synthetic Feâ^'S-Based Clusters with PhCOCI:  Parallel Pathways Involving Free and Coordinated Thiolate as Nucleophiles. Inorganic Chemistry, 2006, 45, 9423-9433.	1.9	5
43	Competitive Oxygen Reduction Pathways to Superoxide and Peroxide during Sodiumâ€Oxygen Battery Discharge. Batteries and Supercaps, 0, , .	2.4	2