Sheng Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3252333/publications.pdf

Version: 2024-02-01

17	290	11	17
papers	citations	h-index	g-index
17	17	17	246
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	Effect of B2O3 on Structure and Properties of CaO–MgO–B2O3–Al2O3–SiO2 Glasses. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 816-822.	1.9	43
2	Effects of alkali metal oxides on crystallization behavior and acid corrosion resistance of cordierite-based glass-ceramics. Journal of Non-Crystalline Solids, 2018, 481, 184-190.	1.5	32
3	Preparation of graphene-glass fiber-resin composites and its electromagnetic shielding performance. Composite Interfaces, 2018, 25, 883-900.	1.3	30
4	Effects of Y2O3 on structure and dielectric properties of aluminoborosilicate glasses. Journal of Non-Crystalline Solids, 2019, 503-504, 110-114.	1.5	30
5	Effect of Y 2 O 3 and La 2 O 3 on structure and dielectric properties of aluminoborosilicate glasses. Journal of Non-Crystalline Solids, 2018, 496, 1-5.	1.5	26
6	Effects of alkaline-earth metal oxides on structure and properties of iron phosphate glasses. Journal of Non-Crystalline Solids, 2016, 434, 108-114.	1.5	19
7	Effects of barium oxide on structure and properties of calcium iron phosphate glasses. Journal of Non-Crystalline Solids, 2016, 450, 87-94.	1.5	17
8	Structure and properties of zinc aluminophosphate glasses and those doped with zirconium dioxide. Journal of Non-Crystalline Solids, 2015, 419, 45-50.	1.5	14
9	Effect of rare-earth oxides on structure and chemical resistance of calcium aluminophosphate glasses. Journal of Non-Crystalline Solids, 2018, 491, 71-78.	1.5	14
10	Effect of SnO2 on the structure and chemical durability of the glass prepared by red mud. Journal of Non-Crystalline Solids, 2019, 509, 54-59.	1.5	14
11	Influences of ZnO on the chemical durability and thermal stability of calcium iron phosphate glasses. Journal of Non-Crystalline Solids, 2018, 498, 228-235.	1.5	13
12	Dielectric and thermal properties of aluminoborosilicate glasses doped with mixed rare-earth oxides. Journal of Non-Crystalline Solids, 2021, 556, 120550.	1.5	11
13	Local structure characterization and thermal properties of P2O5MgO Na2O Li2O glasses doped with SiO2. Journal of Molecular Structure, 2016, 1118, 42-47.	1.8	8
14	Mechanical and dynamic properties of V2O5-TeO2-P2O5 glasses. Journal of Alloys and Compounds, 2021, 863, 158074.	2.8	8
15	Effect of different Ca/La ratio on structure and properties of Al–B–Si glass with low dielectric constant. Journal of Materials Science: Materials in Electronics, 2016, 27, 9821-9827.	1.1	7
16	Properties of Aluminosilicate Glasses Prepared by Red Mud with Various [Al2O3]/[CaO] Mass Ratios. Journal Wuhan University of Technology, Materials Science Edition, 2018, 33, 363-367.	0.4	3
17	A Novel Conversion Process for Waste Slag: The Preparation of Aluminosilicate Glass with Evaluation of the Dielectric Properties from Blast Furnace Slag. Jom, 2015, 67, 2754-2758.	0.9	1