
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3252076/publications.pdf Version: 2024-02-01

NEETH TYACL FADS

#	Article	IF	CITATIONS
1	Garlic exosome-like nanoparticles reverse high-fat diet induced obesity via the gut/brain axis. Theranostics, 2022, 12, 1220-1246.	10.0	44
2	Mechanisms of autophagy and mitophagy in skeletal development, diseases and therapeutics. Life Sciences, 2022, 301, 120595.	4.3	16
3	Diabetic Covid-19 severity: Impaired glucose tolerance and pathologic bone loss. Biochemical and Biophysical Research Communications, 2022, 620, 180-187.	2.1	4
4	Exercise-Linked Skeletal Irisin Ameliorates Diabetes-Associated Osteoporosis by Inhibiting the Oxidative Damage–Dependent miR-150-FNDC5/Pyroptosis Axis. Diabetes, 2022, 71, 2777-2792.	0.6	29
5	Gut microbiota and the periodontal disease: role of hyperhomocysteinemia. Canadian Journal of Physiology and Pharmacology, 2021, 99, 9-17.	1.4	9
6	Effects of fibrinogen synthesis inhibition on vascular cognitive impairment during traumatic brain injury in mice. Brain Research, 2021, 1751, 147208.	2.2	7
7	Probiotics Stimulate Bone Formation in Obese Mice via Histone Methylations. Theranostics, 2021, 11, 8605-8623.	10.0	22
8	Exosomal lncRNA-H19 promotes osteogenesis and angiogenesis through mediating Angpt1/Tie2-NO signaling in CBS-heterozygous mice. Theranostics, 2021, 11, 7715-7734.	10.0	59
9	Allyl sulfide promotes osteoblast differentiation and bone density via reducing mitochondrial DNA release mediated Kdm6b/H3K27me3 epigenetic mechanism. Biochemical and Biophysical Research Communications, 2021, 543, 87-94.	2.1	11
10	Rebuilding Microbiome for Mitigating Traumatic Brain Injury: Importance of Restructuring the Gut-Microbiome-Brain Axis. Molecular Neurobiology, 2021, 58, 3614-3627.	4.0	20
11	Hydrogen sulfide prevents ethanolâ€induced ZOâ€1 CpG promoter hypermethylationâ€dependent vascular permeability via miRâ€218/DNMT3a axis. Journal of Cellular Physiology, 2021, 236, 6852-6867.	4.1	12
12	The role of gut microbiota in bone homeostasis. Bone, 2020, 135, 115317.	2.9	78
13	Hyperhomocysteinemia induced endothelial progenitor cells dysfunction through hyper-methylation of CBS promoter. Biochemical and Biophysical Research Communications, 2019, 510, 135-141.	2.1	23
14	Hydrogen sulfide attenuates homocysteineâ€induced osteoblast dysfunction by inhibiting mitochondrial toxicity. Journal of Cellular Physiology, 2019, 234, 18602-18614.	4.1	23
15	Role of hydrogen sulfide in the musculoskeletal system. Bone, 2019, 124, 33-39.	2.9	15
16	Tetrahydrocurcumin epigenetically mitigates mitochondrial dysfunction in brain vasculature during ischemic stroke. Neurochemistry International, 2019, 122, 120-138.	3.8	54
17	A high methionine, low folate and vitamin B6/B12 containing diet can be associated with memory loss by epigenetic silencing of netrin-1. Neural Regeneration Research, 2019, 14, 1247.	3.0	19
18	Altered Non oding RNAâ€Histone Acetylation Regulatory Circuit Is Associated With Cognitive Impairment via Gut Dysbiosis in Aging Mice. FASEB Journal, 2019, 33, 714.3.	0.5	2

#	Article	IF	CITATIONS
19	Probiotics Ameliorate Gutâ€Microbial Dysbiosis, Intestinal Permeability, Systemic Inflammation, and Skeletal Muscle Dysfunction in Cystathionineâ€Î²â€synthaseâ€Deficient Mice. FASEB Journal, 2019, 33, 701.16.	0.5	1
20	Inflammation, oxidative stress, and higher expression levels of Nrf2 and NQO1 proteins in the airways of women chronically exposed to biomass fuel smoke. Molecular and Cellular Biochemistry, 2018, 447, 63-76.	3.1	31
21	Exercise Mitigates Alcohol Induced Endoplasmic Reticulum Stress Mediated Cognitive Impairment through ATF6-Herp Signaling. Scientific Reports, 2018, 8, 5158.	3.3	29
22	Tetrahydrocurcumin ameliorates homocysteineâ€mediated mitochondrial remodeling in brain endothelial cells. Journal of Cellular Physiology, 2018, 233, 3080-3092.	4.1	25
23	Remodeling of Retinal Architecture in Diabetic Retinopathy: Disruption of Ocular Physiology and Visual Functions by Inflammatory Gene Products and Pyroptosis. Frontiers in Physiology, 2018, 9, 1268.	2.8	45
24	Hydrogen Sulfide Promotes Bone Homeostasis by Balancing Inflammatory Cytokine Signaling in CBS-Deficient Mice through an Epigenetic Mechanism. Scientific Reports, 2018, 8, 15226.	3.3	41
25	Hydrogen sulfide improves postischemic neoangiogenesis in the hind limb of cystathionine- <i>β</i> -synthase mutant mice via PPAR- <i>γ</i> /VEGF axis. Physiological Reports, 2018, 6, e13858.	1.7	37
26	Metabolic engineering of <i>Escherichia coli</i> W3110 strain by incorporating genome-level modifications and synthetic plasmid modules to enhance L-Dopa production from glycerol. Preparative Biochemistry and Biotechnology, 2018, 48, 671-682.	1.9	19
27	Exosomes: mediators of bone diseases, protection, and therapeutics potential. Oncoscience, 2018, 5, 181-195.	2.2	90
28	High methionine, low folate and low vitamin B6/B12 (HM-LF-LV) diet causes neurodegeneration and subsequent short-term memory loss. Metabolic Brain Disease, 2018, 33, 1923-1934.	2.9	33
29	Hydrogen sulfide alleviates hyperhomocysteinemia-mediated skeletal muscle atrophy via mitigation of oxidative and endoplasmic reticulum stress injury. American Journal of Physiology - Cell Physiology, 2018, 315, C609-C622.	4.6	46
30	Hydrogen sulfide epigenetically mitigates bone loss through OPC/RANKL regulation during hyperhomocysteinemia in mice. Bone, 2018, 114, 90-108.	2.9	66
31	Ally Sulfide Epigenetically Targets Cellular Senescence and Prevents Ageâ€related Bone Loss in Mice. FASEB Journal, 2018, 32, .	0.5	0
32	Hyperhomocysteinemiaâ€Mediated Endoplasmic Reticulum Stress in Skeletal Muscle Dysfunction via JNK/proâ€inflammatory Pathway. FASEB Journal, 2018, 32, 538.4.	0.5	0
33	Probiotic Treatment Induces Neuroprotection in Hyperhomocysteinemia Mice after Ischemic Stroke. FASEB Journal, 2018, 32, 921.7.	0.5	0
34	Mechanism of Mitochondrial Dysfunction in Brain Vasculature during Ischemic Stroke: Role of Tetrahydrocurcumin. FASEB Journal, 2018, 32, 711.16.	0.5	0
35	Gut Microbiome Manipulation Promotes Bone Anabolism via Regulatory T ell Differentiation in Obese Mice. FASEB Journal, 2018, 32, 924.5.	0.5	0
36	Dementia-like pathology in type-2 diabetes: A novel microRNA mechanism. Molecular and Cellular Neurosciences, 2017, 80, 58-65.	2.2	29

#	Article	IF	CITATIONS
37	Hydrogen sulfide, endoplasmic reticulum stress and alcohol mediated neurotoxicity. Brain Research Bulletin, 2017, 130, 251-256.	3.0	17
38	Cross-talk of MicroRNA and hydrogen sulfide: A novel therapeutic approach for bone diseases. Biomedicine and Pharmacotherapy, 2017, 92, 1073-1084.	5.6	26
39	Designing an Escherichia coli Strain for Phenylalanine Overproduction by Metabolic Engineering. Molecular Biotechnology, 2017, 59, 168-178.	2.4	11
40	Homocysteine as a Pathological Biomarker for Bone Disease. Journal of Cellular Physiology, 2017, 232, 2704-2709.	4.1	61
41	Detection of T and B cells specific complement-fixing alloantibodies using flow cytometry: A diagnostic approach for a resource limited laboratory. Asian Journal of Transfusion Science, 2017, 11, 171.	0.3	2
42	Cerebrovascular disorders caused by hyperfibrinogenaemia. Journal of Physiology, 2016, 594, 5941-5957.	2.9	17
43	Curcumin-loaded embryonic stem cell exosomes restored neurovascular unit following ischemia-reperfusion injury. International Journal of Biochemistry and Cell Biology, 2016, 79, 360-369.	2.8	200
44	Homocysteine, Alcoholism, and Its Potential Epigenetic Mechanism. Alcoholism: Clinical and Experimental Research, 2016, 40, 2474-2481.	2.4	44
45	Mechanism of Oxidative Stress and Synapse Dysfunction in the Pathogenesis of Alzheimer's Disease: Understanding the Therapeutics Strategies. Molecular Neurobiology, 2016, 53, 648-661.	4.0	352
46	Inhibition of MMP-9 attenuates hypertensive cerebrovascular dysfunction in Dahl salt-sensitive rats. Molecular and Cellular Biochemistry, 2016, 413, 25-35.	3.1	17
47	Hydrogen Sulfide Ameliorates Homocysteine-Induced Alzheimer's Disease-Like Pathology, Blood–Brain Barrier Disruption, and Synaptic Disorder. Molecular Neurobiology, 2016, 53, 2451-2467.	4.0	118
48	Expression of CD71 by flow cytometry in acute leukemias: More often seen in acute myeloid leukemia. Indian Journal of Pathology and Microbiology, 2016, 59, 310.	0.2	10
49	Stability of eosin-5'-maleimide dye used in flow cytometric analysis for red cell membrane disorders. Blood Research, 2015, 50, 109.	1.3	8
50	Hydrogen Sulfide Epigenetically Attenuates Homocysteineâ€Induced Mitochondrial Toxicity Mediated Through NMDA Receptor in Mouse Brain Endothelial (bEnd3) Cells. Journal of Cellular Physiology, 2015, 230, 378-394.	4.1	74
51	Role of Hydrogen Sulfide in Brain Synaptic Remodeling. Methods in Enzymology, 2015, 555, 207-229.	1.0	44
52	Primary Follicular Lymphoma of the Breast: A Rare Clinical Entity Diagnosed Using Tissue Flow Cytometry. Indian Journal of Hematology and Blood Transfusion, 2015, 31, 300-301.	0.6	1
53	A possible molecular mechanism of hearing loss during cerebral ischemia in mice. Canadian Journal of Physiology and Pharmacology, 2015, 93, 505-516.	1.4	11
54	Probability of Finding Marrow Unrelated Donor (MUD) for an Indian patient in a Multi-national Human Leukocyte Antigen (HLA) Registry. Indian Journal of Hematology and Blood Transfusion, 2015, 31, 186-195.	0.6	9

#	Article	IF	CITATIONS
55	Diabetic Stroke Severity: Epigenetic Remodeling and Neuronal, Glial, and Vascular Dysfunction. Diabetes, 2015, 64, 4260-4271.	0.6	32
56	Epigenetic impact of curcumin on stroke prevention. Metabolic Brain Disease, 2015, 30, 427-435.	2.9	38
57	Enhanced hepatitis B virus (HBV) pre-genomic RNA levels and higher transcription efficiency of defective HBV genomes. Journal of General Virology, 2015, 96, 3109-3117.	2.9	9
58	Exosomes in neurological disease, neuroprotection, repair and therapeutics: problems and perspectives. Neural Regeneration Research, 2015, 10, 1565.	3.0	40
59	Epigenetic Silencing of Netrin is associated with Memory Loss by High Methionine, Low Folate and Vitamin B 6 /B 12 containing diet. FASEB Journal, 2015, 29, 996.6.	0.5	1
60	Hydrogen Sulfide Inhibits Homocysteineâ€Induced Synaptic Remodeling in Mice Hippocampus via. NMDA Receptor. FASEB Journal, 2015, 29, 834.4.	0.5	0
61	A Link between Mitophagy and Apoptosis in Endothelial Cells: Exosomal Delivery of Mfnâ€⊋ siRNA. FASEB Journal, 2015, 29, 974.13.	0.5	2
62	Curcuminâ€Encapsulated Stem Cell Exosomes Mitigates Neuroâ€Vascular Mitochondrial Dysfunction after Stroke in T1DM Mice. FASEB Journal, 2015, 29, 773.15.	0.5	0
63	Extraoral Plasmablastic Lymphoma Detected Using Ascitic Fluid Cytology and Flow Cytometry: A Case Report with a Review of the Literature. Acta Cytologica, 2014, 58, 309-317.	1.3	8
64	Exosomes: Mediators of Neurodegeneration, Neuroprotection and Therapeutics. Molecular Neurobiology, 2014, 49, 590-600.	4.0	281
65	Autophagy of Mitochondria: A Promising Therapeutic Target for Neurodegenerative Disease. Cell Biochemistry and Biophysics, 2014, 70, 707-719.	1.8	66
66	Mitochondrial mitophagy in mesenteric artery remodeling in hyperhomocysteinemia. Physiological Reports, 2014, 2, e00283.	1.7	22
67	Role of MicroRNA29b in Blood–Brain Barrier Dysfunction during Hyperhomocysteinemia: An Epigenetic Mechanism. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 1212-1222.	4.3	60
68	Method and validation of synaptosomal preparation for isolation of synaptic membrane proteins from rat brain. MethodsX, 2014, 1, 102-107.	1.6	50
69	Mitochondrial epigenetics in bone remodeling during hyperhomocysteinemia. Molecular and Cellular Biochemistry, 2014, 395, 89-98.	3.1	21
70	Nutri-epigenetics Ameliorates Blood–Brain Barrier Damage and Neurodegeneration in Hyperhomocysteinemia: Role of Folic Acid. Journal of Molecular Neuroscience, 2014, 52, 202-215.	2.3	75
71	C4d FlowPRA is a useful tool in live related renal transplants. Pathology, 2014, 46, 471-472.	0.6	1
72	Astrocyte mediated MMP-9 activation in the synapse dysfunction: An implication in Alzheimer disease. Therapeutic Targets for Neurological Diseases, 2014, 1, .	2.2	34

#	Article	IF	CITATIONS
73	Synergy of Homocysteine, MicroRNA, and Epigenetics: A Novel Therapeutic Approach for Stroke. Molecular Neurobiology, 2013, 48, 157-168.	4.0	59
74	The role of homocysteine in bone remodeling. Clinical Chemistry and Laboratory Medicine, 2013, 51, 579-90.	2.3	85
75	Hydrogen sulfide attenuates homocysteine induced neurovascular dysfunction. FASEB Journal, 2013, 27, lb728.	0.5	0
76	Epigenetic inhibition by 5 Aza 2′ deoxycytidine mitigates hypertension in hyperhomocysteinemia. FASEB Journal, 2013, 27, 955.9.	0.5	0
77	Hyperhomocysteinemia during aortic aneurysm, a plausible role of epigenetics. International Journal of Physiology, Pathophysiology and Pharmacology, 2013, 5, 32-42.	0.8	15
78	Autophagy mechanism of right ventricular remodeling in murine model of pulmonary artery constriction. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H688-H696.	3.2	52
79	Increased endogenous H ₂ S generation by CBS, CSE, and 3MST gene therapy improves ex vivo renovascular relaxation in hyperhomocysteinemia. American Journal of Physiology - Cell Physiology, 2012, 303, C41-C51.	4.6	102
80	Etiology and Survival of Aplastic Anemia: A Study Based on Clinical Investigation. Journal of Clinical Laboratory Analysis, 2012, 26, 452-458.	2.1	4
81	Homocysteine alters cerebral microvascular integrity and causes remodeling by antagonizing GABA-A receptor. Molecular and Cellular Biochemistry, 2012, 371, 89-96.	3.1	25
82	Folic acid improves inner ear vascularization in hyperhomocysteinemic mice. Hearing Research, 2012, 284, 42-51.	2.0	12
83	Tetrahydrocurcumin Ameliorates Homocysteinylated Cytochrome-c Mediated Autophagy in Hyperhomocysteinemia Mice after Cerebral Ischemia. Journal of Molecular Neuroscience, 2012, 47, 128-138.	2.3	64
84	Matrix metalloproteinaseâ€9 in homocysteineâ€induced intestinal microvascular endothelial paracellular and transcellular permeability. Journal of Cellular Biochemistry, 2012, 113, 1159-1169.	2.6	28
85	Autophagy and Heart Failure: A Possible Role for Homocysteine. Cell Biochemistry and Biophysics, 2012, 62, 1-11.	1.8	21
86	Mitochondrial division/mitophagy inhibitor (Mdivi) Ameliorates Pressure Overload Induced Heart Failure. PLoS ONE, 2012, 7, e32388.	2.5	177
87	Matrix Metalloproteinaseâ€9 in Homocysteineâ€Induced Intestinal Microvascular Endothelial Paracellular and Transcellular Permeability. FASEB Journal, 2012, 26, 862.4.	0.5	0
88	Mitochondrial mechanism of right ventricular failure (RVF). FASEB Journal, 2012, 26, 1127.3.	0.5	0
89	Role Of MMP9 In Cardiac Stem Cell Differentiation And Autophagy. FASEB Journal, 2012, 26, .	0.5	0
90	Bad to Bone: Homocysteine. FASEB Journal, 2012, 26, 1143.5.	0.5	0

#	Article	IF	CITATIONS
91	Epigenetic Reprogramming of Mitochondrial Dysfunction in hyperhomocysteinemia. FASEB Journal, 2012, 26, 701.17.	0.5	0
92	MiRâ€133 As An Epigenetic Regulator Of Diabetic Heart Failure. FASEB Journal, 2012, 26, 1057.22.	0.5	1
93	Epigenetic mechanism of atherosclerosis and hypertension in Hyperhomocysteinemia. FASEB Journal, 2012, 26, 874.7.	0.5	Ο
94	Electrical stimulation of cardiomyocytes activates mitochondrial matrix metalloproteinase causing electrical remodeling. Biochemical and Biophysical Research Communications, 2011, 404, 762-766.	2.1	18
95	Fibrinogen alters mouse brain endothelial cell layer integrity affecting vascular endothelial cadherin. Biochemical and Biophysical Research Communications, 2011, 413, 509-514.	2.1	29
96	Hydrogen sulfide mitigates transition from compensatory hypertrophy to heart failure. Journal of Applied Physiology, 2011, 110, 1093-1100.	2.5	61
97	Hyperhomocysteinemia decreases bone blood flow. Vascular Health and Risk Management, 2011, 7, 31.	2.3	28
98	Homocysteine mediated decrease in bone blood flow and remodeling: Role of folic acid. Journal of Orthopaedic Research, 2011, 29, 1511-1516.	2.3	46
99	The siRNA targeting MMPâ€9 mitigates Homocysteine induced dysruption of barrier integrity in Human intestinal microvascular cells. FASEB Journal, 2011, 25, 1066.7.	0.5	Ο
100	Exercise ameliorates diabetic cardiomyopathy by inducing beta2â€adrenergic receptors and miRâ€133a, and attenuating MMPâ€9. FASEB Journal, 2011, 25, 1032.4.	0.5	3
101	Synergism between arrhythmia and hyperhomo-cysteinemia in structural heart disease. International Journal of Physiology, Pathophysiology and Pharmacology, 2011, 3, 107-19.	0.8	16
102	Cystathionine beta synthase gene dose dependent vascular remodeling in murine model of hyperhomocysteinemia. International Journal of Physiology, Pathophysiology and Pharmacology, 2011, 3, 210-22.	0.8	17
103	Role of PPARgamma, a nuclear hormone receptor in neuroprotection. Indian Journal of Biochemistry and Biophysics, 2011, 48, 73-81.	0.0	21
104	Hydrogen sulfide protects against vascular remodeling from endothelial damage. Amino Acids, 2010, 39, 1161-1169.	2.7	50
105	Homocysteine to Hydrogen Sulfide or Hypertension. Cell Biochemistry and Biophysics, 2010, 57, 49-58.	1.8	148
106	Seven novel single nucleotide polymorphisms identified within river buffalo (Bubalus bubalis) lactoferrin gene. Tropical Animal Health and Production, 2010, 42, 1021-1026.	1.4	3
107	Synergism in hyperhomocysteinemia and diabetes: role of PPAR gamma and tempol. Cardiovascular Diabetology, 2010, 9, 49.	6.8	58
108	Blood flow interplays with elastin: collagen and MMP: TIMP ratios to maintain healthy vascular structure and function. Vascular Health and Risk Management, 2010, 6, 215.	2.3	35

#	Article	IF	CITATIONS
109	Cardiac specific deletion ofN-methyl-d-aspartate receptor 1 ameliorates mtMMP-9 mediated autophagy/mitophagy in hyperhomocysteinemia. Journal of Receptor and Signal Transduction Research, 2010, 30, 78-87.	2.5	60
110	MMP-2/TIMP-2/TIMP-4 versus MMP-9/TIMP-3 in transition from compensatory hypertrophy and angiogenesis to decompensatory heart failure [*] . Archives of Physiology and Biochemistry, 2010, 116, 63-72.	2.1	66
111	H ₂ S ameliorates oxidative and proteolytic stresses and protects the heart against adverse remodeling in chronic heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H451-H456.	3.2	91
112	Folic acid mitigated cardiac dysfunction by normalizing the levels of tissue inhibitor of metalloproteinase and homocysteine-metabolizing enzymes postmyocardial infarction in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H1484-H1493.	3.2	23
113	Functional consequences of the collagen/elastin switch in vascular remodeling in hyperhomocysteinemic wild-type, eNOS ^{â^'/â^'} , and iNOS ^{â^'/â^'} mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 299, L301-L311.	2.9	50
114	Hydrogen sulfide mitigates matrix metalloproteinase-9 activity and neurovascular permeability in hyperhomocysteinemic mice. Neurochemistry International, 2010, 56, 301-307.	3.8	39
115	Oxidative and Proteolytic Stress in Homocysteine-Associated Cardiovascular Diseases. , 2010, , 139-148.		0
116	Role of dicer in diabetic cardiomyopathy through dysregulation of MMPâ€9 and TIMPâ€4. FASEB Journal, 2010, 24, 978.19.	0.5	0
117	Inhibition of Matrix Metalloproteinaseâ€9 (MMPâ€9) Reverses Changes in Vascular Wall Structure and Function of Thoracic Aorta of Dahl Saltâ€Sensitive (DSS) Rats. FASEB Journal, 2010, 24, 599.4.	0.5	0
118	Folic acid mitigated homocysteineâ€mediated decrease in bone blood flow and bone remodeling. FASEB Journal, 2010, 24, 630.7.	0.5	0
119	Tetrahydrocurcumin ameliorates mtMMPâ€9 mediated mitophagy and mitochondria remodeling in Stroke. FASEB Journal, 2010, 24, 604.4.	0.5	0
120	Folic Acid Mitigated Cardiac Dysfunction by Normalizing the Levels of Tissue Inhibitor of Metalloproteinase and homocysteineâ€netabolizing enzymes Post myocardial Infarction in Mice FASEB Journal, 2010, 24, 600.5.	0.5	0
121	Functional heterogeneity in vascular remodeling (MMPâ€9â^'/â^' and PARâ€1â^'/+) in hyperhomocysteinemic (CBSâ€++) and diabetic (Akita, Ins2â^'/+) mice FASEB Journal, 2010, 24, 599.6.	0.5	0
122	Curcumin mitigated ischemic and hyperhomocysteinemic cerebral microvascular mitochondrial mitophagy by decreasing oxidative and inflammatory stresses. FASEB Journal, 2010, 24, 604.19.	0.5	0
123	Restoration of contractility in hyperhomocysteinemia by cardiac-specific deletion of NMDA-R1. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H887-H892.	3.2	35
124	Fibrinogen-induced endothelin-1 production from endothelial cells. American Journal of Physiology - Cell Physiology, 2009, 296, C840-C847.	4.6	48
125	Hydrogen sulfide ameliorates hyperhomocysteinemia-associated chronic renal failure. American Journal of Physiology - Renal Physiology, 2009, 297, F410-F419.	2.7	146
126	Nitrotyrosinylation, remodeling and endothelialâ€myocyte uncoupling in iNOS, cystathionine beta synthase (CBS) knockouts and iNOS/CBS double knockout mice. Journal of Cellular Biochemistry, 2009, 106, 119-126.	2.6	26

#	Article	IF	CITATIONS
127	Activation of GABAâ€A receptor ameliorates homocysteineâ€induced MMPâ€9 activation by ERK pathway. Journal of Cellular Physiology, 2009, 220, 257-266.	4.1	60
128	Fibrinogen induces alterations of endothelial cell tight junction proteins. Journal of Cellular Physiology, 2009, 221, 195-203.	4.1	66
129	Matrix imbalance by inducing expression of metalloproteinase and oxidative stress in cochlea of hyperhomocysteinemic mice. Molecular and Cellular Biochemistry, 2009, 332, 215-224.	3.1	28
130	MicroRNAs Are Involved in Homocysteine-Induced Cardiac Remodeling. Cell Biochemistry and Biophysics, 2009, 55, 153-162.	1.8	74
131	MicroRNAs as a therapeutic target for cardiovascular diseases. Journal of Cellular and Molecular Medicine, 2009, 13, 778-789.	3.6	137
132	H ₂ S Protects Against Methionine–Induced Oxidative Stress in Brain Endothelial Cells. Antioxidants and Redox Signaling, 2009, 11, 25-33.	5.4	149
133	Activation of GABA¬A receptor Protects Mitochondria and Reduces Cerebral ischemia FASEB Journal, 2009, 23, 614.8.	0.5	2
134	Cerebroprotective role of Tetrahydro Curcumin in hyperhomocysteinemic ischemic mice by regulating NFâ€kappa B. FASEB Journal, 2009, 23, 614.7.	0.5	1
135	Role of MicroRNAs in homocysteine induced oxidative stress. FASEB Journal, 2009, 23, 1038.9.	0.5	0
136	Hyperhomocysteinemia induces matrix disruption and oxidative stress in inner ear. FASEB Journal, 2009, 23, 1028.5.	0.5	0
137	Differential expression of Gs in a murine model of homocysteinemic heart failure. Vascular Health and Risk Management, 2009, 5, 79-84.	2.3	7
138	Homocysteine, hydrogen sulfide (H2S) and NMDA-receptor in heart failure. Indian Journal of Biochemistry and Biophysics, 2009, 46, 441-6.	0.0	15
139	Role of Copper and Homocysteine in Pressure Overload Heart Failure. Cardiovascular Toxicology, 2008, 8, 137-144.	2.7	29
140	Renal mitochondrial damage and protein modification in type-2 diabetes. Acta Diabetologica, 2008, 45, 75-81.	2.5	32
141	Cytochrome P450 (CYP) 2J2 gene transfection attenuates MMPâ€9 via inhibition of NFâ€̂Pβ in hyperhomocysteinemia. Journal of Cellular Physiology, 2008, 215, 771-781.	4.1	44
142	GABAA receptor agonist mitigates homocysteine-induced cerebrovascular remodeling in knockout mice. Brain Research, 2008, 1221, 147-153.	2.2	25
143	Homocysteine decreases blood flow to the brain due to vascular resistance in carotid artery. Neurochemistry International, 2008, 53, 214-219.	3.8	40
144	Cardioprotective Role of Sodium Thiosulfate on Chronic Heart Failure by Modulating Endogenous H ₂ S Generation. Pharmacology, 2008, 82, 201-213.	2.2	65

#	Article	IF	CITATIONS
145	Ciglitazone, a PPARÎ ³ agonist, ameliorates diabetic nephropathy in part through homocysteine clearance. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E1205-E1212.	3.5	38
146	Mitochondrial matrix metalloproteinase activation decreases myocyte contractility in hyperhomocysteinemia. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H890-H897.	3.2	90
147	Congenic expression of tissue inhibitor of metalloproteinase in Dahl-salt sensitive hypertensive rats is associated with reduced LV hypertrophy. Archives of Physiology and Biochemistry, 2008, 114, 340-348.	2.1	11
148	PPAR gamma agonist normalizes glomerular filtration rate, tissue levels of homocysteine, and attenuates endothelial-myocyte uncoupling in alloxan induced diabetic mice. International Journal of Biological Sciences, 2008, 4, 236-244.	6.4	18
149	Cardiac Gαs and Gαi Modulate Sympathetic Versus Parasympathetic Mechanisms in Hyperhomocysteinemia. , 2008, , 51-66.		о
150	Homocysteine attenuates blood brain barrier function by inducing oxidative stress and the junctional proteins. FASEB Journal, 2008, 22, 734.7.	0.5	5
151	Mitochondrial MMP activation decreases myocyte contractility in hyperhomocysteinemia FASEB Journal, 2008, 22, 751.8.	0.5	Ο
152	Mechanism of homocysteineâ€induced dementia/spasm. FASEB Journal, 2008, 22, 734.9.	0.5	0
153	Effect of hydrogen sulfide on methionineâ€induced oxidative stress in brain endothelial cells. FASEB Journal, 2008, 22, 734.8.	0.5	0
154	Hyperhomocysteinemia causes cardiac rhythm disturbances due to a shift in atrial and ventricular gap junction protein distribution. FASEB Journal, 2008, 22, 971.10.	0.5	0
155	Cardioprotective role of sodium thiosulfate on chronic heart failure by modulating endogenous H2S generation. FASEB Journal, 2008, 22, .	0.5	Ο
156	Cystathionine-β-synthase gene transfer and 3-deazaadenosine ameliorate inflammatory response in endothelial cells. American Journal of Physiology - Cell Physiology, 2007, 293, C1779-C1787.	4.6	38
157	Oxidative remodeling in pressure overload induced chronic heart failure. European Journal of Heart Failure, 2007, 9, 450-457.	7.1	26
158	Cardiac Dys-Synchronization and Arrhythmia in Hyperhomocysteinemia. Current Neurovascular Research, 2007, 4, 289-294.	1.1	11
159	Î ³ -Aminbuturic Acid A Receptor Mitigates Homocysteine-Induced Endothelial Cell Permeability. Endothelium: Journal of Endothelial Cell Research, 2007, 14, 315-323.	1.7	28
160	Differential expression of Î ³ -aminobutyric acid receptor A (GABAA) and effects of homocysteine. Clinical Chemistry and Laboratory Medicine, 2007, 45, 1777-84.	2.3	32
161	Cardiac Synchronous and Dys-synchronous Remodeling in Diabetes Mellitus. Antioxidants and Redox Signaling, 2007, 9, 971-978.	5.4	3
162	Reversal of Systemic Hypertension-Associated Cardiac Remodeling in Chronic Pressure Overload Myocardium by Ciglitazone. International Journal of Biological Sciences, 2007, 3, 385-392.	6.4	36

#	Article	IF	CITATIONS
163	Homocysteine-induced biochemical stress predisposes to cytoskeletal remodeling in stretched endothelial cells. Molecular and Cellular Biochemistry, 2007, 302, 133-143.	3.1	12
164	Fibrinogen induces endothelial cell permeability. Molecular and Cellular Biochemistry, 2007, 307, 13-22.	3.1	83
165	Differential Expression of the GABA _A receptor subunits in the Kidney and Cardiovascular system. FASEB Journal, 2007, 21, A497.	0.5	1
166	Homocysteine and Oxidative Mechanisms of Vascular Remodeling. FASEB Journal, 2007, 21, A1217.	0.5	1
167	REVERSAL OF DIABETIC COMPLICATIONS IN GENETIC MODEL OF TYPE I DIABETES (Akita mouse) BY TEMPOL. FASEB Journal, 2007, 21, A834.	0.5	0
168	HOMOCYSTEINEâ€INDUCED ENDOTHELIAL CELL PERMEABILITY, ROLE OF γâ€AMINOBUTURIC ACID A (GABA A) RECEPTOR. FASEB Journal, 2007, 21, A489.	0.5	0
169	Activation of GABA A receptor ameliorate homocysteineâ€induced MMPâ€9 by ERK pathway. FASEB Journal, 2007, 21, A497.	0.5	0
170	CABA Receptors Ameliorate Hcy-Mediated Integrin Shedding and Constrictive Collagen Remodeling in Microvascular Endothelial Cells. Cell Biochemistry and Biophysics, 2006, 45, 157-166.	1.8	22
171	Mitochondrial mechanism of microvascular endothelial cells apoptosis in hyperhomocysteinemia. Journal of Cellular Biochemistry, 2006, 98, 1150-1162.	2.6	82
172	Homocysteine-induced myofibroblast differentiation in mouse aortic endothelial cells. Journal of Cellular Physiology, 2006, 209, 767-774.	4.1	33
173	Arrhythmia and neuronal/endothelial myocyte uncoupling in hyperhomocysteinemia. Archives of Physiology and Biochemistry, 2006, 112, 219-227.	2.1	18
174	Homocysteine causes cerebrovascular leakage in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H1206-H1213.	3.2	92
175	Homocysteine-mediated activation and mitochondrial translocation of calpain regulates MMP-9 in MVEC. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H2825-H2835.	3.2	80
176	Pioglitazone mitigates renal glomerular vascular changes in high-fat, high-calorie-induced type 2 diabetes mellitus. American Journal of Physiology - Renal Physiology, 2006, 291, F694-F701.	2.7	42
177	3-Deazaadenosine mitigates arterial remodeling and hypertension in hyperhomocysteinemic mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 291, L905-L911.	2.9	49
178	Regulation of homocysteine-induced MMP-9 by ERK1/2 pathway. American Journal of Physiology - Cell Physiology, 2006, 290, C883-C891.	4.6	90
179	Mechanisms of Vascular Remodeling in eNOS Knockout Mice. FASEB Journal, 2006, 20, A711.	0.5	1
180	Homocysteine alters Redox Regulation through Thioredoxinâ€Interacting Protein: A Novel role of Forkhead Transcription Factor (FOXOâ€3a/FKHRâ€L1). FASEB Journal, 2006, 20, A1456.	0.5	1

#	Article	IF	CITATIONS
181	Mitochondrial Mechanism of Microvascular Endothelial Cell Apoptosis Induced by Homocysteine. FASEB Journal, 2006, 20, A1461.	0.5	0
182	Homocysteine induces endothelialâ€myofibroblast differentiation through activation of focal adhesion kinase. FASEB Journal, 2006, 20, A1465.	0.5	0
183	Arterial hypertension and aortic remodeling in hyperhomocysteinemic mice are prevented by 3â€Deazaadenosine. FASEB Journal, 2006, 20, A306.	0.5	Ο
184	Pressure Overload Instigates Remodeling in Ailing to Failing Myocardium in Mice. FASEB Journal, 2006, 20, A1199.	0.5	0
185	Role of matrix metalloproteinase-9 in endothelial apoptosis in chronic heart failure in mice. Journal of Applied Physiology, 2005, 99, 2398-2405.	2.5	47
186	Early induction of matrix metalloproteinase-9 transduces signaling in human heart end stage failure. Journal of Cellular and Molecular Medicine, 2005, 9, 704-713.	3.6	55
187	Mitochondrial mechanism of oxidative stress and systemic hypertension in hyperhomocysteinemia. Journal of Cellular Biochemistry, 2005, 96, 665-671.	2.6	48
188	GABA receptors and nitric oxide ameliorate constrictive collagen remodeling in hyperhomocysteinemia. Journal of Cellular Physiology, 2005, 205, 422-427.	4.1	19
189	Mechanisms of homocysteine-induced oxidative stress. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H2649-H2656.	3.2	327
190	Protease-activated receptor and endothelial-myocyte uncoupling in chronic heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H2770-H2777.	3.2	37
191	Homocysteine-dependent cardiac remodeling and endothelial-myocyte coupling in a 2 kidney, 1 clip Goldblatt hypertension mouse model. Canadian Journal of Physiology and Pharmacology, 2005, 83, 583-594.	1.4	19
192	Leukemia/Lymphoma-related Factor, a POZ Domain-containing Transcriptional Repressor, Interacts with Histone Deacetylase-1 and Inhibits Cartilage Oligomeric Matrix Protein Gene Expression and Chondrogenesis. Journal of Biological Chemistry, 2004, 279, 47081-47091.	3.4	88
193	Novel human prostate-specific cDNA: molecular cloning, expression, and immunobiology of the recombinant protein. Biochemical and Biophysical Research Communications, 2002, 297, 1075-1084.	2.1	5