
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3252076/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanism of Oxidative Stress and Synapse Dysfunction in the Pathogenesis of Alzheimer's Disease: Understanding the Therapeutics Strategies. Molecular Neurobiology, 2016, 53, 648-661.	4.0	352
2	Mechanisms of homocysteine-induced oxidative stress. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H2649-H2656.	3.2	327
3	Exosomes: Mediators of Neurodegeneration, Neuroprotection and Therapeutics. Molecular Neurobiology, 2014, 49, 590-600.	4.0	281
4	Curcumin-loaded embryonic stem cell exosomes restored neurovascular unit following ischemia-reperfusion injury. International Journal of Biochemistry and Cell Biology, 2016, 79, 360-369.	2.8	200
5	Mitochondrial division/mitophagy inhibitor (Mdivi) Ameliorates Pressure Overload Induced Heart Failure. PLoS ONE, 2012, 7, e32388.	2.5	177
6	H ₂ S Protects Against Methionine–Induced Oxidative Stress in Brain Endothelial Cells. Antioxidants and Redox Signaling, 2009, 11, 25-33.	5.4	149
7	Homocysteine to Hydrogen Sulfide or Hypertension. Cell Biochemistry and Biophysics, 2010, 57, 49-58.	1.8	148
8	Hydrogen sulfide ameliorates hyperhomocysteinemia-associated chronic renal failure. American Journal of Physiology - Renal Physiology, 2009, 297, F410-F419.	2.7	146
9	MicroRNAs as a therapeutic target for cardiovascular diseases. Journal of Cellular and Molecular Medicine, 2009, 13, 778-789.	3.6	137
10	Hydrogen Sulfide Ameliorates Homocysteine-Induced Alzheimer's Disease-Like Pathology, Blood–Brain Barrier Disruption, and Synaptic Disorder. Molecular Neurobiology, 2016, 53, 2451-2467.	4.0	118
11	Increased endogenous H ₂ S generation by CBS, CSE, and 3MST gene therapy improves ex vivo renovascular relaxation in hyperhomocysteinemia. American Journal of Physiology - Cell Physiology, 2012, 303, C41-C51.	4.6	102
12	Homocysteine causes cerebrovascular leakage in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H1206-H1213.	3.2	92
13	H ₂ S ameliorates oxidative and proteolytic stresses and protects the heart against adverse remodeling in chronic heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H451-H456.	3.2	91
14	Regulation of homocysteine-induced MMP-9 by ERK1/2 pathway. American Journal of Physiology - Cell Physiology, 2006, 290, C883-C891.	4.6	90
15	Mitochondrial matrix metalloproteinase activation decreases myocyte contractility in hyperhomocysteinemia. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H890-H897.	3.2	90
16	Exosomes: mediators of bone diseases, protection, and therapeutics potential. Oncoscience, 2018, 5, 181-195.	2.2	90
17	Leukemia/Lymphoma-related Factor, a POZ Domain-containing Transcriptional Repressor, Interacts with Histone Deacetylase-1 and Inhibits Cartilage Oligomeric Matrix Protein Gene Expression and Chondrogenesis. Journal of Biological Chemistry, 2004, 279, 47081-47091.	3.4	88
18	The role of homocysteine in bone remodeling. Clinical Chemistry and Laboratory Medicine, 2013, 51, 579-90	2.3	85

#	Article	lF	CITATIONS
19	Fibrinogen induces endothelial cell permeability. Molecular and Cellular Biochemistry, 2007, 307, 13-22.	3.1	83
20	Mitochondrial mechanism of microvascular endothelial cells apoptosis in hyperhomocysteinemia. Journal of Cellular Biochemistry, 2006, 98, 1150-1162.	2.6	82
21	Homocysteine-mediated activation and mitochondrial translocation of calpain regulates MMP-9 in MVEC. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H2825-H2835.	3.2	80
22	The role of gut microbiota in bone homeostasis. Bone, 2020, 135, 115317.	2.9	78
23	Nutri-epigenetics Ameliorates Blood–Brain Barrier Damage and Neurodegeneration in Hyperhomocysteinemia: Role of Folic Acid. Journal of Molecular Neuroscience, 2014, 52, 202-215.	2.3	75
24	MicroRNAs Are Involved in Homocysteine-Induced Cardiac Remodeling. Cell Biochemistry and Biophysics, 2009, 55, 153-162.	1.8	74
25	Hydrogen Sulfide Epigenetically Attenuates Homocysteineâ€Induced Mitochondrial Toxicity Mediated Through NMDA Receptor in Mouse Brain Endothelial (bEnd3) Cells. Journal of Cellular Physiology, 2015, 230, 378-394.	4.1	74
26	Fibrinogen induces alterations of endothelial cell tight junction proteins. Journal of Cellular Physiology, 2009, 221, 195-203.	4.1	66
27	MMP-2/TIMP-2/TIMP-4 versus MMP-9/TIMP-3 in transition from compensatory hypertrophy and angiogenesis to decompensatory heart failure [*] . Archives of Physiology and Biochemistry, 2010, 116, 63-72.	2.1	66
28	Autophagy of Mitochondria: A Promising Therapeutic Target for Neurodegenerative Disease. Cell Biochemistry and Biophysics, 2014, 70, 707-719.	1.8	66
29	Hydrogen sulfide epigenetically mitigates bone loss through OPG/RANKL regulation during hyperhomocysteinemia in mice. Bone, 2018, 114, 90-108.	2.9	66
30	Cardioprotective Role of Sodium Thiosulfate on Chronic Heart Failure by Modulating Endogenous H ₂ S Generation. Pharmacology, 2008, 82, 201-213.	2.2	65
31	Tetrahydrocurcumin Ameliorates Homocysteinylated Cytochrome-c Mediated Autophagy in Hyperhomocysteinemia Mice after Cerebral Ischemia. Journal of Molecular Neuroscience, 2012, 47, 128-138.	2.3	64
32	Hydrogen sulfide mitigates transition from compensatory hypertrophy to heart failure. Journal of Applied Physiology, 2011, 110, 1093-1100.	2.5	61
33	Homocysteine as a Pathological Biomarker for Bone Disease. Journal of Cellular Physiology, 2017, 232, 2704-2709.	4.1	61
34	Activation of GABAâ€A receptor ameliorates homocysteineâ€induced MMPâ€9 activation by ERK pathway. Journal of Cellular Physiology, 2009, 220, 257-266.	4.1	60
35	Cardiac specific deletion ofN-methyl-d-aspartate receptor 1 ameliorates mtMMP-9 mediated autophagy/mitophagy in hyperhomocysteinemia. Journal of Receptor and Signal Transduction Research, 2010, 30, 78-87.	2.5	60
36	Role of MicroRNA29b in Blood–Brain Barrier Dysfunction during Hyperhomocysteinemia: An Epigenetic Mechanism. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 1212-1222.	4.3	60

#	Article	IF	CITATIONS
37	Synergy of Homocysteine, MicroRNA, and Epigenetics: A Novel Therapeutic Approach for Stroke. Molecular Neurobiology, 2013, 48, 157-168.	4.0	59
38	Exosomal lncRNA-H19 promotes osteogenesis and angiogenesis through mediating Angpt1/Tie2-NO signaling in CBS-heterozygous mice. Theranostics, 2021, 11, 7715-7734.	10.0	59
39	Synergism in hyperhomocysteinemia and diabetes: role of PPAR gamma and tempol. Cardiovascular Diabetology, 2010, 9, 49.	6.8	58
40	Early induction of matrix metalloproteinase-9 transduces signaling in human heart end stage failure. Journal of Cellular and Molecular Medicine, 2005, 9, 704-713.	3.6	55
41	Tetrahydrocurcumin epigenetically mitigates mitochondrial dysfunction in brain vasculature during ischemic stroke. Neurochemistry International, 2019, 122, 120-138.	3.8	54
42	Autophagy mechanism of right ventricular remodeling in murine model of pulmonary artery constriction. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H688-H696.	3.2	52
43	Hydrogen sulfide protects against vascular remodeling from endothelial damage. Amino Acids, 2010, 39, 1161-1169.	2.7	50
44	Functional consequences of the collagen/elastin switch in vascular remodeling in hyperhomocysteinemic wild-type, eNOS ^{â^²/â^²} , and iNOS ^{â^²/â^²} mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 299, L301-L311.	2.9	50
45	Method and validation of synaptosomal preparation for isolation of synaptic membrane proteins from rat brain. MethodsX, 2014, 1, 102-107.	1.6	50
46	3-Deazaadenosine mitigates arterial remodeling and hypertension in hyperhomocysteinemic mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 291, L905-L911.	2.9	49
47	Mitochondrial mechanism of oxidative stress and systemic hypertension in hyperhomocysteinemia. Journal of Cellular Biochemistry, 2005, 96, 665-671.	2.6	48
48	Fibrinogen-induced endothelin-1 production from endothelial cells. American Journal of Physiology - Cell Physiology, 2009, 296, C840-C847.	4.6	48
49	Role of matrix metalloproteinase-9 in endothelial apoptosis in chronic heart failure in mice. Journal of Applied Physiology, 2005, 99, 2398-2405.	2.5	47
50	Homocysteine mediated decrease in bone blood flow and remodeling: Role of folic acid. Journal of Orthopaedic Research, 2011, 29, 1511-1516.	2.3	46
51	Hydrogen sulfide alleviates hyperhomocysteinemia-mediated skeletal muscle atrophy via mitigation of oxidative and endoplasmic reticulum stress injury. American Journal of Physiology - Cell Physiology, 2018, 315, C609-C622.	4.6	46
52	Remodeling of Retinal Architecture in Diabetic Retinopathy: Disruption of Ocular Physiology and Visual Functions by Inflammatory Gene Products and Pyroptosis. Frontiers in Physiology, 2018, 9, 1268.	2.8	45
53	Cytochrome P450 (CYP) 2J2 gene transfection attenuates MMPâ€9 via inhibition of NFâ€̂Pβ in hyperhomocysteinemia. Journal of Cellular Physiology, 2008, 215, 771-781.	4.1	44
54	Role of Hydrogen Sulfide in Brain Synaptic Remodeling. Methods in Enzymology, 2015, 555, 207-229.	1.0	44

#	Article	IF	CITATIONS
55	Homocysteine, Alcoholism, and Its Potential Epigenetic Mechanism. Alcoholism: Clinical and Experimental Research, 2016, 40, 2474-2481.	2.4	44
56	Garlic exosome-like nanoparticles reverse high-fat diet induced obesity via the gut/brain axis. Theranostics, 2022, 12, 1220-1246.	10.0	44
57	Pioglitazone mitigates renal glomerular vascular changes in high-fat, high-calorie-induced type 2 diabetes mellitus. American Journal of Physiology - Renal Physiology, 2006, 291, F694-F701.	2.7	42
58	Hydrogen Sulfide Promotes Bone Homeostasis by Balancing Inflammatory Cytokine Signaling in CBS-Deficient Mice through an Epigenetic Mechanism. Scientific Reports, 2018, 8, 15226.	3.3	41
59	Homocysteine decreases blood flow to the brain due to vascular resistance in carotid artery. Neurochemistry International, 2008, 53, 214-219.	3.8	40
60	Exosomes in neurological disease, neuroprotection, repair and therapeutics: problems and perspectives. Neural Regeneration Research, 2015, 10, 1565.	3.0	40
61	Hydrogen sulfide mitigates matrix metalloproteinase-9 activity and neurovascular permeability in hyperhomocysteinemic mice. Neurochemistry International, 2010, 56, 301-307.	3.8	39
62	Cystathionine-β-synthase gene transfer and 3-deazaadenosine ameliorate inflammatory response in endothelial cells. American Journal of Physiology - Cell Physiology, 2007, 293, C1779-C1787.	4.6	38
63	Ciglitazone, a PPARÎ ³ agonist, ameliorates diabetic nephropathy in part through homocysteine clearance. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E1205-E1212.	3.5	38
64	Epigenetic impact of curcumin on stroke prevention. Metabolic Brain Disease, 2015, 30, 427-435.	2.9	38
65	Protease-activated receptor and endothelial-myocyte uncoupling in chronic heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H2770-H2777.	3.2	37
66	Hydrogen sulfide improves postischemic neoangiogenesis in the hind limb of cystathionine- <i>β</i> -synthase mutant mice via PPAR- <i>γ</i> /VEGF axis. Physiological Reports, 2018, 6, e13858.	1.7	37
67	Reversal of Systemic Hypertension-Associated Cardiac Remodeling in Chronic Pressure Overload Myocardium by Ciglitazone. International Journal of Biological Sciences, 2007, 3, 385-392.	6.4	36
68	Restoration of contractility in hyperhomocysteinemia by cardiac-specific deletion of NMDA-R1. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H887-H892.	3.2	35
69	Blood flow interplays with elastin: collagen and MMP: TIMP ratios to maintain healthy vascular structure and function. Vascular Health and Risk Management, 2010, 6, 215.	2.3	35
70	Astrocyte mediated MMP-9 activation in the synapse dysfunction: An implication in Alzheimer disease. Therapeutic Targets for Neurological Diseases, 2014, 1, .	2.2	34
71	Homocysteine-induced myofibroblast differentiation in mouse aortic endothelial cells. Journal of Cellular Physiology, 2006, 209, 767-774.	4.1	33
72	High methionine, low folate and low vitamin B6/B12 (HM-LF-LV) diet causes neurodegeneration and subsequent short-term memory loss. Metabolic Brain Disease, 2018, 33, 1923-1934.	2.9	33

#	Article	IF	CITATIONS
73	Differential expression of Î ³ -aminobutyric acid receptor A (GABAA) and effects of homocysteine. Clinical Chemistry and Laboratory Medicine, 2007, 45, 1777-84.	2.3	32
74	Renal mitochondrial damage and protein modification in type-2 diabetes. Acta Diabetologica, 2008, 45, 75-81.	2.5	32
75	Diabetic Stroke Severity: Epigenetic Remodeling and Neuronal, Glial, and Vascular Dysfunction. Diabetes, 2015, 64, 4260-4271.	0.6	32
76	Inflammation, oxidative stress, and higher expression levels of Nrf2 and NQO1 proteins in the airways of women chronically exposed to biomass fuel smoke. Molecular and Cellular Biochemistry, 2018, 447, 63-76.	3.1	31
77	Role of Copper and Homocysteine in Pressure Overload Heart Failure. Cardiovascular Toxicology, 2008, 8, 137-144.	2.7	29
78	Fibrinogen alters mouse brain endothelial cell layer integrity affecting vascular endothelial cadherin. Biochemical and Biophysical Research Communications, 2011, 413, 509-514.	2.1	29
79	Dementia-like pathology in type-2 diabetes: A novel microRNA mechanism. Molecular and Cellular Neurosciences, 2017, 80, 58-65.	2.2	29
80	Exercise Mitigates Alcohol Induced Endoplasmic Reticulum Stress Mediated Cognitive Impairment through ATF6-Herp Signaling. Scientific Reports, 2018, 8, 5158.	3.3	29
81	Exercise-Linked Skeletal Irisin Ameliorates Diabetes-Associated Osteoporosis by Inhibiting the Oxidative Damage–Dependent miR-150-FNDC5/Pyroptosis Axis. Diabetes, 2022, 71, 2777-2792.	0.6	29
82	γ-Aminbuturic Acid A Receptor Mitigates Homocysteine-Induced Endothelial Cell Permeability. Endothelium: Journal of Endothelial Cell Research, 2007, 14, 315-323.	1.7	28
83	Matrix imbalance by inducing expression of metalloproteinase and oxidative stress in cochlea of hyperhomocysteinemic mice. Molecular and Cellular Biochemistry, 2009, 332, 215-224.	3.1	28
84	Hyperhomocysteinemia decreases bone blood flow. Vascular Health and Risk Management, 2011, 7, 31.	2.3	28
85	Matrix metalloproteinaseâ€9 in homocysteineâ€induced intestinal microvascular endothelial paracellular and transcellular permeability. Journal of Cellular Biochemistry, 2012, 113, 1159-1169.	2.6	28
86	Oxidative remodeling in pressure overload induced chronic heart failure. European Journal of Heart Failure, 2007, 9, 450-457.	7.1	26
87	Nitrotyrosinylation, remodeling and endothelialâ€myocyte uncoupling in iNOS, cystathionine beta synthase (CBS) knockouts and iNOS/CBS double knockout mice. Journal of Cellular Biochemistry, 2009, 106, 119-126.	2.6	26
88	Cross-talk of MicroRNA and hydrogen sulfide: A novel therapeutic approach for bone diseases. Biomedicine and Pharmacotherapy, 2017, 92, 1073-1084.	5.6	26
89	GABAA receptor agonist mitigates homocysteine-induced cerebrovascular remodeling in knockout mice. Brain Research, 2008, 1221, 147-153.	2.2	25
90	Homocysteine alters cerebral microvascular integrity and causes remodeling by antagonizing GABA-A receptor. Molecular and Cellular Biochemistry, 2012, 371, 89-96.	3.1	25

#	Article	IF	CITATIONS
91	Tetrahydrocurcumin ameliorates homocysteineâ€mediated mitochondrial remodeling in brain endothelial cells. Journal of Cellular Physiology, 2018, 233, 3080-3092.	4.1	25
92	Folic acid mitigated cardiac dysfunction by normalizing the levels of tissue inhibitor of metalloproteinase and homocysteine-metabolizing enzymes postmyocardial infarction in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H1484-H1493.	3.2	23
93	Hyperhomocysteinemia induced endothelial progenitor cells dysfunction through hyper-methylation of CBS promoter. Biochemical and Biophysical Research Communications, 2019, 510, 135-141.	2.1	23
94	Hydrogen sulfide attenuates homocysteineâ€induced osteoblast dysfunction by inhibiting mitochondrial toxicity. Journal of Cellular Physiology, 2019, 234, 18602-18614.	4.1	23
95	GABA Receptors Ameliorate Hcy-Mediated Integrin Shedding and Constrictive Collagen Remodeling in Microvascular Endothelial Cells. Cell Biochemistry and Biophysics, 2006, 45, 157-166.	1.8	22
96	Mitochondrial mitophagy in mesenteric artery remodeling in hyperhomocysteinemia. Physiological Reports, 2014, 2, e00283.	1.7	22
97	Probiotics Stimulate Bone Formation in Obese Mice via Histone Methylations. Theranostics, 2021, 11, 8605-8623.	10.0	22
98	Autophagy and Heart Failure: A Possible Role for Homocysteine. Cell Biochemistry and Biophysics, 2012, 62, 1-11.	1.8	21
99	Mitochondrial epigenetics in bone remodeling during hyperhomocysteinemia. Molecular and Cellular Biochemistry, 2014, 395, 89-98.	3.1	21
100	Role of PPARgamma, a nuclear hormone receptor in neuroprotection. Indian Journal of Biochemistry and Biophysics, 2011, 48, 73-81.	0.0	21
101	Rebuilding Microbiome for Mitigating Traumatic Brain Injury: Importance of Restructuring the Gut-Microbiome-Brain Axis. Molecular Neurobiology, 2021, 58, 3614-3627.	4.0	20
102	GABA receptors and nitric oxide ameliorate constrictive collagen remodeling in hyperhomocysteinemia. Journal of Cellular Physiology, 2005, 205, 422-427.	4.1	19
103	Homocysteine-dependent cardiac remodeling and endothelial-myocyte coupling in a 2 kidney, 1 clip Goldblatt hypertension mouse model. Canadian Journal of Physiology and Pharmacology, 2005, 83, 583-594.	1.4	19
104	Metabolic engineering of <i>Escherichia coli</i> W3110 strain by incorporating genome-level modifications and synthetic plasmid modules to enhance L-Dopa production from glycerol. Preparative Biochemistry and Biotechnology, 2018, 48, 671-682.	1.9	19
105	A high methionine, low folate and vitamin B6/B12 containing diet can be associated with memory loss by epigenetic silencing of netrin-1. Neural Regeneration Research, 2019, 14, 1247.	3.0	19
106	Arrhythmia and neuronal/endothelial myocyte uncoupling in hyperhomocysteinemia. Archives of Physiology and Biochemistry, 2006, 112, 219-227.	2.1	18
107	Electrical stimulation of cardiomyocytes activates mitochondrial matrix metalloproteinase causing electrical remodeling. Biochemical and Biophysical Research Communications, 2011, 404, 762-766.	2.1	18
108	PPAR gamma agonist normalizes glomerular filtration rate, tissue levels of homocysteine, and attenuates endothelial-myocyte uncoupling in alloxan induced diabetic mice. International Journal of Biological Sciences, 2008, 4, 236-244.	6.4	18

#	Article	IF	CITATIONS
109	Cerebrovascular disorders caused by hyperfibrinogenaemia. Journal of Physiology, 2016, 594, 5941-5957.	2.9	17
110	Inhibition of MMP-9 attenuates hypertensive cerebrovascular dysfunction in Dahl salt-sensitive rats. Molecular and Cellular Biochemistry, 2016, 413, 25-35.	3.1	17
111	Hydrogen sulfide, endoplasmic reticulum stress and alcohol mediated neurotoxicity. Brain Research Bulletin, 2017, 130, 251-256.	3.0	17
112	Cystathionine beta synthase gene dose dependent vascular remodeling in murine model of hyperhomocysteinemia. International Journal of Physiology, Pathophysiology and Pharmacology, 2011, 3, 210-22.	0.8	17
113	Synergism between arrhythmia and hyperhomo-cysteinemia in structural heart disease. International Journal of Physiology, Pathophysiology and Pharmacology, 2011, 3, 107-19.	0.8	16
114	Mechanisms of autophagy and mitophagy in skeletal development, diseases and therapeutics. Life Sciences, 2022, 301, 120595.	4.3	16
115	Role of hydrogen sulfide in the musculoskeletal system. Bone, 2019, 124, 33-39.	2.9	15
116	Hyperhomocysteinemia during aortic aneurysm, a plausible role of epigenetics. International Journal of Physiology, Pathophysiology and Pharmacology, 2013, 5, 32-42.	0.8	15
117	Homocysteine, hydrogen sulfide (H2S) and NMDA-receptor in heart failure. Indian Journal of Biochemistry and Biophysics, 2009, 46, 441-6.	0.0	15
118	Homocysteine-induced biochemical stress predisposes to cytoskeletal remodeling in stretched endothelial cells. Molecular and Cellular Biochemistry, 2007, 302, 133-143.	3.1	12
119	Folic acid improves inner ear vascularization in hyperhomocysteinemic mice. Hearing Research, 2012, 284, 42-51.	2.0	12
120	Hydrogen sulfide prevents ethanolâ€induced ZOâ€1 CpG promoter hypermethylationâ€dependent vascular permeability via miRâ€218/DNMT3a axis. Journal of Cellular Physiology, 2021, 236, 6852-6867.	4.1	12
121	Cardiac Dys-Synchronization and Arrhythmia in Hyperhomocysteinemia. Current Neurovascular Research, 2007, 4, 289-294.	1.1	11
122	Congenic expression of tissue inhibitor of metalloproteinase in Dahl-salt sensitive hypertensive rats is associated with reduced LV hypertrophy. Archives of Physiology and Biochemistry, 2008, 114, 340-348.	2.1	11
123	A possible molecular mechanism of hearing loss during cerebral ischemia in mice. Canadian Journal of Physiology and Pharmacology, 2015, 93, 505-516.	1.4	11
124	Designing an Escherichia coli Strain for Phenylalanine Overproduction by Metabolic Engineering. Molecular Biotechnology, 2017, 59, 168-178.	2.4	11
125	Allyl sulfide promotes osteoblast differentiation and bone density via reducing mitochondrial DNA release mediated Kdm6b/H3K27me3 epigenetic mechanism. Biochemical and Biophysical Research Communications, 2021, 543, 87-94.	2.1	11
126	Expression of CD71 by flow cytometry in acute leukemias: More often seen in acute myeloid leukemia. Indian Journal of Pathology and Microbiology, 2016, 59, 310.	0.2	10

#	Article	IF	CITATIONS
127	Probability of Finding Marrow Unrelated Donor (MUD) for an Indian patient in a Multi-national Human Leukocyte Antigen (HLA) Registry. Indian Journal of Hematology and Blood Transfusion, 2015, 31, 186-195.	0.6	9
128	Gut microbiota and the periodontal disease: role of hyperhomocysteinemia. Canadian Journal of Physiology and Pharmacology, 2021, 99, 9-17.	1.4	9
129	Enhanced hepatitis B virus (HBV) pre-genomic RNA levels and higher transcription efficiency of defective HBV genomes. Journal of General Virology, 2015, 96, 3109-3117.	2.9	9
130	Extraoral Plasmablastic Lymphoma Detected Using Ascitic Fluid Cytology and Flow Cytometry: A Case Report with a Review of the Literature. Acta Cytologica, 2014, 58, 309-317.	1.3	8
131	Stability of eosin-5'-maleimide dye used in flow cytometric analysis for red cell membrane disorders. Blood Research, 2015, 50, 109.	1.3	8
132	Effects of fibrinogen synthesis inhibition on vascular cognitive impairment during traumatic brain injury in mice. Brain Research, 2021, 1751, 147208.	2.2	7
133	Differential expression of Gs in a murine model of homocysteinemic heart failure. Vascular Health and Risk Management, 2009, 5, 79-84.	2.3	7
134	Novel human prostate-specific cDNA: molecular cloning, expression, and immunobiology of the recombinant protein. Biochemical and Biophysical Research Communications, 2002, 297, 1075-1084.	2.1	5
135	Homocysteine attenuates blood brain barrier function by inducing oxidative stress and the junctional proteins. FASEB Journal, 2008, 22, 734.7.	0.5	5
136	Etiology and Survival of Aplastic Anemia: A Study Based on Clinical Investigation. Journal of Clinical Laboratory Analysis, 2012, 26, 452-458.	2.1	4
137	Diabetic Covid-19 severity: Impaired glucose tolerance and pathologic bone loss. Biochemical and Biophysical Research Communications, 2022, 620, 180-187.	2.1	4
138	Cardiac Synchronous and Dys-synchronous Remodeling in Diabetes Mellitus. Antioxidants and Redox Signaling, 2007, 9, 971-978.	5.4	3
139	Seven novel single nucleotide polymorphisms identified within river buffalo (Bubalus bubalis) lactoferrin gene. Tropical Animal Health and Production, 2010, 42, 1021-1026.	1.4	3
140	Exercise ameliorates diabetic cardiomyopathy by inducing beta2â€adrenergic receptors and miRâ€133a, and attenuating MMPâ€9. FASEB Journal, 2011, 25, 1032.4.	0.5	3
141	Detection of T and B cells specific complement-fixing alloantibodies using flow cytometry: A diagnostic approach for a resource limited laboratory. Asian Journal of Transfusion Science, 2017, 11, 171.	0.3	2
142	Activation of GABA¬A receptor Protects Mitochondria and Reduces Cerebral ischemia FASEB Journal, 2009, 23, 614.8.	0.5	2
143	A Link between Mitophagy and Apoptosis in Endothelial Cells: Exosomal Delivery of Mfnâ€2 siRNA. FASEB Journal, 2015, 29, 974.13.	0.5	2
144	Altered Nonâ€Coding RNAâ€Histone Acetylation Regulatory Circuit Is Associated With Cognitive Impairment via Gut Dysbiosis in Aging Mice. FASEB Journal, 2019, 33, 714.3.	0.5	2

NEETU TYAGI, FAPS

#	Article	IF	CITATIONS
145	C4d FlowPRA is a useful tool in live related renal transplants. Pathology, 2014, 46, 471-472.	0.6	1
146	Primary Follicular Lymphoma of the Breast: A Rare Clinical Entity Diagnosed Using Tissue Flow Cytometry. Indian Journal of Hematology and Blood Transfusion, 2015, 31, 300-301.	0.6	1
147	Mechanisms of Vascular Remodeling in eNOS Knockout Mice. FASEB Journal, 2006, 20, A711.	0.5	1
148	Differential Expression of the GABA _A receptor subunits in the Kidney and Cardiovascular system. FASEB Journal, 2007, 21, A497.	0.5	1
149	Homocysteine alters Redox Regulation through Thioredoxinâ€Interacting Protein: A Novel role of Forkhead Transcription Factor (FOXOâ€3a/FKHR‣1). FASEB Journal, 2006, 20, A1456.	0.5	1
150	Homocysteine and Oxidative Mechanisms of Vascular Remodeling. FASEB Journal, 2007, 21, A1217.	0.5	1
151	Cerebroprotective role of Tetrahydro Curcumin in hyperhomocysteinemic ischemic mice by regulating NFâ€kappa B. FASEB Journal, 2009, 23, 614.7.	0.5	1
152	MiRâ€133 As An Epigenetic Regulator Of Diabetic Heart Failure. FASEB Journal, 2012, 26, 1057.22.	0.5	1
153	Epigenetic Silencing of Netrin is associated with Memory Loss by High Methionine, Low Folate and Vitamin B 6 /B 12 containing diet. FASEB Journal, 2015, 29, 996.6.	0.5	1
154	Probiotics Ameliorate Gutâ€Microbial Dysbiosis, Intestinal Permeability, Systemic Inflammation, and Skeletal Muscle Dysfunction in Cystathionineâ€î2â€synthaseâ€Deficient Mice. FASEB Journal, 2019, 33, 701.16.	0.5	1
155	Mitochondrial Mechanism of Microvascular Endothelial Cell Apoptosis Induced by Homocysteine. FASEB Journal, 2006, 20, A1461.	0.5	0
156	Homocysteine induces endothelialâ€nyofibroblast differentiation through activation of focal adhesion kinase. FASEB Journal, 2006, 20, A1465.	0.5	0
157	Arterial hypertension and aortic remodeling in hyperhomocysteinemic mice are prevented by 3â€Deazaadenosine. FASEB Journal, 2006, 20, A306.	0.5	0
158	Pressure Overload Instigates Remodeling in Ailing to Failing Myocardium in Mice. FASEB Journal, 2006, 20, A1199.	0.5	0
159	REVERSAL OF DIABETIC COMPLICATIONS IN GENETIC MODEL OF TYPE I DIABETES (Akita mouse) BY TEMPOL. FASEB Journal, 2007, 21, A834.	0.5	0
160	HOMOCYSTEINEâ€INDUCED ENDOTHELIAL CELL PERMEABILITY, ROLE OF γâ€AMINOBUTURIC ACID A (GABA A) RECEPTOR. FASEB Journal, 2007, 21, A489.	0.5	0
161	Activation of GABA A receptor ameliorate homocysteineâ€induced MMPâ€9 by ERK pathway. FASEB Journal, 2007, 21, A497.	0.5	0
162	Cardiac GÎ \pm s and GÎ \pm i Modulate Sympathetic Versus Parasympathetic Mechanisms in		0

² Hyperhomocysteinemia. , 2008, , 51-66.

#	Article	IF	CITATIONS
163	Mitochondrial MMP activation decreases myocyte contractility in hyperhomocysteinemia FASEB Journal, 2008, 22, 751.8.	0.5	0
164	Mechanism of homocysteineâ€induced dementia/spasm. FASEB Journal, 2008, 22, 734.9.	0.5	0
165	Effect of hydrogen sulfide on methionineâ€induced oxidative stress in brain endothelial cells. FASEB Journal, 2008, 22, 734.8.	0.5	0
166	Hyperhomocysteinemia causes cardiac rhythm disturbances due to a shift in atrial and ventricular gap junction protein distribution. FASEB Journal, 2008, 22, 971.10.	0.5	0
167	Cardioprotective role of sodium thiosulfate on chronic heart failure by modulating endogenous H2S generation. FASEB Journal, 2008, 22, .	0.5	Ο
168	Role of MicroRNAs in homocysteine induced oxidative stress. FASEB Journal, 2009, 23, 1038.9.	0.5	0
169	Hyperhomocysteinemia induces matrix disruption and oxidative stress in inner ear. FASEB Journal, 2009, 23, 1028.5.	0.5	0
170	Oxidative and Proteolytic Stress in Homocysteine-Associated Cardiovascular Diseases. , 2010, , 139-148.		0
171	Role of dicer in diabetic cardiomyopathy through dysregulation of MMPâ€9 and TIMPâ€4. FASEB Journal, 2010, 24, 978.19.	0.5	0
172	Inhibition of Matrix Metalloproteinaseâ€9 (MMPâ€9) Reverses Changes in Vascular Wall Structure and Function of Thoracic Aorta of Dahl Salt‧ensitive (DSS) Rats. FASEB Journal, 2010, 24, 599.4.	0.5	0
173	Folic acid mitigated homocysteineâ€mediated decrease in bone blood flow and bone remodeling. FASEB Journal, 2010, 24, 630.7.	0.5	0
174	Tetrahydrocurcumin ameliorates mtMMPâ€9 mediated mitophagy and mitochondria remodeling in Stroke. FASEB Journal, 2010, 24, 604.4.	0.5	0
175	Folic Acid Mitigated Cardiac Dysfunction by Normalizing the Levels of Tissue Inhibitor of Metalloproteinase and homocysteineâ€metabolizing enzymes Post myocardial Infarction in Mice FASEB Journal, 2010, 24, 600.5.	0.5	0
176	Functional heterogeneity in vascular remodeling (MMPâ€9â^'/â~' and PARâ€1â^'/+) in hyperhomocysteinemic (CBSâ€++) and diabetic (Akita, Ins2â^'/+) mice FASEB Journal, 2010, 24, 599.6.	0.5	0
177	Curcumin mitigated ischemic and hyperhomocysteinemic cerebral microvascular mitochondrial mitophagy by decreasing oxidative and inflammatory stresses. FASEB Journal, 2010, 24, 604.19.	0.5	0
178	The siRNA targeting MMPâ€9 mitigates Homocysteine induced dysruption of barrier integrity in Human intestinal microvascular cells. FASEB Journal, 2011, 25, 1066.7.	0.5	0
179	Matrix Metalloproteinaseâ€9 in Homocysteineâ€Induced Intestinal Microvascular Endothelial Paracellular and Transcellular Permeability. FASEB Journal, 2012, 26, 862.4.	0.5	0
180	Mitochondrial mechanism of right ventricular failure (RVF). FASEB Journal, 2012, 26, 1127.3.	0.5	0

#	Article	IF	CITATIONS
181	Role Of MMP9 In Cardiac Stem Cell Differentiation And Autophagy. FASEB Journal, 2012, 26, .	0.5	0
182	Bad to Bone: Homocysteine. FASEB Journal, 2012, 26, 1143.5.	0.5	0
183	Epigenetic Reprogramming of Mitochondrial Dysfunction in hyperhomocysteinemia. FASEB Journal, 2012, 26, 701.17.	0.5	0
184	Epigenetic mechanism of atherosclerosis and hypertension in Hyperhomocysteinemia. FASEB Journal, 2012, 26, 874.7.	0.5	0
185	Hydrogen sulfide attenuates homocysteine induced neurovascular dysfunction. FASEB Journal, 2013, 27, lb728.	0.5	0
186	Epigenetic inhibition by 5 Aza 2′ deoxycytidine mitigates hypertension in hyperhomocysteinemia. FASEB Journal, 2013, 27, 955.9.	0.5	0
187	Hydrogen Sulfide Inhibits Homocysteineâ€Induced Synaptic Remodeling in Mice Hippocampus via. NMDA Receptor. FASEB Journal, 2015, 29, 834.4.	0.5	0
188	Curcuminâ€Encapsulated Stem Cell Exosomes Mitigates Neuroâ€Vascular Mitochondrial Dysfunction after Stroke in T1DM Mice. FASEB Journal, 2015, 29, 773.15.	0.5	0
189	Ally Sulfide Epigenetically Targets Cellular Senescence and Prevents Ageâ€related Bone Loss in Mice. FASEB Journal, 2018, 32, .	0.5	0
190	Hyperhomocysteinemiaâ€Mediated Endoplasmic Reticulum Stress in Skeletal Muscle Dysfunction via JNK/proâ€inflammatory Pathway. FASEB Journal, 2018, 32, 538.4.	0.5	0
191	Probiotic Treatment Induces Neuroprotection in Hyperhomocysteinemia Mice after Ischemic Stroke. FASEB Journal, 2018, 32, 921.7.	0.5	0
192	Mechanism of Mitochondrial Dysfunction in Brain Vasculature during Ischemic Stroke: Role of Tetrahydrocurcumin. FASEB Journal, 2018, 32, 711.16.	0.5	0
193	Gut Microbiome Manipulation Promotes Bone Anabolism via Regulatory Tâ€Cell Differentiation in Obese Mice. FASEB Journal, 2018, 32, 924.5.	0.5	0