List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3251888/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Increase in long-chain polyunsaturated fatty acid nâ^'6/nâ^'3 ratio in relation to hepatic steatosis in patients with non-alcoholic fatty liver disease. Clinical Science, 2004, 106, 635-643.	4.3	576
2	Oxidative stress-related parameters in the liver of non-alcoholic fatty liver disease patients. Clinical Science, 2004, 106, 261-268.	4.3	426
3	Up-Regulation of PPAR-Î ³ mRNA Expression in the Liver of Obese Patients: an Additional Reinforcing Lipogenic Mechanism to SREBP-1c Induction. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 1424-1430.	3.6	288
4	Oxidative stress and depletion of hepatic long-chain polyunsaturated fatty acids may contribute to nonalcoholic fatty liver disease. Free Radical Biology and Medicine, 2004, 37, 1499-1507.	2.9	215
5	Enhancement in liver SREBP-1c/PPAR-α ratio and steatosis in obese patients: Correlations with insulin resistance and n-3 long-chain polyunsaturated fatty acid depletion. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2009, 1792, 1080-1086.	3.8	183
6	N-3 PUFA Supplementation Triggers PPAR-α Activation and PPAR-α/NF-κB Interaction: Anti-Inflammatory Implications in Liver Ischemia-Reperfusion Injury. PLoS ONE, 2011, 6, e28502.	2.5	167
7	Long-chain polyunsaturated fatty acids regulation of PPARs, signaling: Relationship to tissue development and aging. Prostaglandins Leukotrienes and Essential Fatty Acids, 2016, 114, 28-34.	2.2	150
8	Superoxide Radical Generation, NADPH Oxidase Activity, and Cytochrome P-450 Content of Rat Liver Microsomal Fractions in an Experimental Hyperthyroid State: Relation to Lipid Peroxidation*. Endocrinology, 1985, 117, 496-501.	2.8	146
9	The importance of the long-chain polyunsaturated fatty acid n-6/n-3 ratio in development of non-alcoholic fatty liver associated with obesity. Food and Function, 2011, 2, 644.	4.6	146
10	Insulin resistance and oxidative stress interdependency in non-alcoholic fatty liver disease. Trends in Molecular Medicine, 2006, 12, 555-558.	6.7	141
11	Oxidative stress signaling underlying liver disease and hepatoprotective mechanisms. World Journal of Hepatology, 2009, 1, 72.	2.0	120
12	Oxidative stress-mediated hepatotoxicity of iron and copper: role of Kupffer cells. BioMetals, 2003, 16, 103-111.	4.1	117
13	Polyunsaturated Fatty Acid Pattern in Liver and Erythrocyte Phospholipids from Obese Patients. Obesity, 2007, 15, 24-31.	3.0	109
14	Molecular adaptations underlying the beneficial effects of hydroxytyrosol in the pathogenic alterations induced by a high-fat diet in mouse liver: PPAR-α and Nrf2 activation, and NF-κB down-regulation. Food and Function, 2017, 8, 1526-1537.	4.6	109
15	Supplementation with Docosahexaenoic Acid and Extra Virgin Olive Oil Prevents Liver Steatosis Induced by a Highâ€Fat Diet in Mice through PPARâ€Î± and Nrf2 Upregulation with Concomitant SREBPâ€I c and NFâ€kB Downregulation. Molecular Nutrition and Food Research, 2017, 61, 1700479.	3.3	106
16	Hydroxytyrosol supplementation ameliorates the metabolic disturbances in white adipose tissue from mice fed a high-fat diet through recovery of transcription factors Nrf2, SREBP-1c, PPAR-γ and NF-κB. Biomedicine and Pharmacotherapy, 2019, 109, 2472-2481.	5.6	106
17	Decreased Liver Fatty Acid Δâ€6 and Δâ€5 Desaturase Activity in Obese Patients. Obesity, 2010, 18, 1460-1463.	3.0	104
18	Relevant Aspects of Nutritional and Dietary Interventions in Non-Alcoholic Fatty Liver Disease. International Journal of Molecular Sciences, 2015, 16, 25168-25198.	4.1	99

#	Article	IF	CITATIONS
19	Lindane-induced liver oxidative stress. Free Radical Biology and Medicine, 1990, 9, 169-179.	2.9	91
20	Hydroxytyrosol and Cytoprotection: A Projection for Clinical Interventions. International Journal of Molecular Sciences, 2017, 18, 930.	4.1	90
21	N-3 Long-Chain Polyunsaturated Fatty Acid Supplementation Significantly Reduces Liver Oxidative Stress in High Fat Induced Steatosis. PLoS ONE, 2012, 7, e46400.	2.5	88
22	Influence of Hyperthyroidism on Superoxide Radical and Hydrogen Peroxide Production by Rat Liver Submitochondrial Particles. Free Radical Research Communications, 1993, 18, 329-335.	1.8	85
23	Liver NFâ€ÎºB and APâ€1 DNA Binding in Obese Patients. Obesity, 2009, 17, 973-979.	3.0	85
24	Reduction of high-fat diet-induced liver proinflammatory state by eicosapentaenoic acid plus hydroxytyrosol supplementation: involvement of resolvins RvE1/2 and RvD1/2. Journal of Nutritional Biochemistry, 2019, 63, 35-43.	4.2	80
25	Reduction in the desaturation capacity of the liver in mice subjected to high fat diet: Relation to LCPUFA depletion in liver and extrahepatic tissues. Prostaglandins Leukotrienes and Essential Fatty Acids, 2015, 98, 7-14.	2.2	79
26	Suppression of high-fat diet-induced obesity-associated liver mitochondrial dysfunction by docosahexaenoic acid and hydroxytyrosol co-administration. Digestive and Liver Disease, 2020, 52, 895-904.	0.9	78
27	Dose-dependent study of the effects of acute lindane administration on rat liver superoxide anion production, antiooidant enzyme activities and lipid peroxidation. Toxicology, 1986, 41, 193-204.	4.2	75
28	Energy metabolism, thyroid calorigenesis, and oxidative stress: functional and cytotoxic consequences. Redox Report, 2000, 5, 265-275.	4.5	73
29	Hydroxytyrosol prevents reduction in liver activity of Δ-5 and Δ-6 desaturases, oxidative stress, and depletion in long chain polyunsaturated fatty acid content in different tissues of high-fat diet fed mice. Lipids in Health and Disease, 2017, 16, 64.	3.0	73
30	Chemiluminescent and Respiratory Responses Related to Thyroid Hormone-Induced Liver Oxidative Stress. Free Radical Research Communications, 1988, 5, 77-84.	1.8	72
31	Increased production of IL-1α and TNF-α in lipopolysaccharide-stimulated blood from obese patients with non-alcoholic fatty liver disease. Cytokine, 2006, 33, 252-257.	3.2	72
32	<i>N-3</i> long-chain PUFA supplementation prevents high fat diet induced mouse liver steatosis and inflammation in relation to PPAR-1± upregulation and NF-1°B DNA binding abrogation. Molecular Nutrition and Food Research, 2014, 58, 1333-1341.	3.3	72
33	Impact of the Co-Administration of N-3 Fatty Acids and Olive Oil Components in Preclinical Nonalcoholic Fatty Liver Disease Models: A Mechanistic View. Nutrients, 2020, 12, 499.	4.1	70
34	Relationship between in vivo chlorzoxazone hydroxylation, hepatic cytochrome P450 2E1 content and liver injury in obese non-alcoholic fatty liver disease patients. Hepatology Research, 2006, 34, 57-63.	3.4	67
35	Thyroid hormone preconditioning: Protection against ischemia-reperfusion liver injury in the rat. Hepatology, 2007, 45, 170-177.	7.3	67
36	Lindane-Induced Oxidative Stress. I. Time Course of Changes in Hepatic Microsomal Parameters, Antioxidant Enzymes, Lipid Peroxidative Indices and Morphological Characteristics. Xenobiotica, 1988, 18, 1297-1304.	1.1	66

#	Article	IF	CITATIONS
37	Supplementation with antioxidant-rich extra virgin olive oil prevents hepatic oxidative stress and reduction of desaturation capacity in mice fed a high-fat diet: Effects on fatty acid composition in liver and extrahepatic tissues. Nutrition, 2016, 32, 1254-1267.	2.4	65
38	Misregulation of PPAR Functioning and Its Pathogenic Consequences Associated with Nonalcoholic Fatty Liver Disease in Human Obesity. PPAR Research, 2012, 2012, 1-14.	2.4	63
39	Effects of Hyperthyroidism on Rat Liver Glutathione Metabolism: Related Enzymes' Activities, Efflux, and Turnover*. Endocrinology, 1991, 129, 85-91.	2.8	62
40	Liver Protective Effects of Extra Virgin Olive Oil: Interaction between Its Chemical Composition and the Cell-signaling Pathways Involved in Protection. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2017, 18, 75-84.	1.2	62
41	High-fat diet induces mouse liver steatosis with a concomitant decline in energy metabolism: attenuation by eicosapentaenoic acid (EPA) or hydroxytyrosol (HT) supplementation and the additive effects upon EPA and HT co-administration. Food and Function, 2019, 10, 6170-6183.	4.6	62
42	Increased Lipid Peroxidation in Hyperthyroid Patients: Suppression by Propylthiouracil Treatment. Free Radical Research Communications, 1988, 5, 1-10.	1.8	59
43	Kupffer Cell Function in Thyroid Hormone-Induced Liver Oxidative Stress in the Rat. Free Radical Research, 1997, 26, 267-279.	3.3	59
44	Thyroid hormone-induced oxidative stress triggers nuclear factor-κB activation and cytokine gene expression in rat liver. Free Radical Biology and Medicine, 2003, 35, 257-265.	2.9	57
45	Protein oxidation in thyroid hormone-induced liver oxidative stress: relation to lipid peroxidation. Toxicology Letters, 1999, 106, 209-214.	0.8	54
46	Attenuation of High-Fat Diet-Induced Rat Liver Oxidative Stress and Steatosis by Combined Hydroxytyrosol- (HT-) Eicosapentaenoic Acid Supplementation Mainly Relies on HT. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-13.	4.0	51
47	Chronic iron overload enhances inducible nitric oxide synthase expression in rat liver. Nitric Oxide - Biology and Chemistry, 2005, 13, 54-61.	2.7	50
48	Influence of Hyperthyroidism on the Activity of Liver Nitric Oxide Synthase in the Rat. Nitric Oxide - Biology and Chemistry, 1997, 1, 463-468.	2.7	47
49	Redox up-regulated expression of rat liver manganese superoxide dismutase and Bcl-2 by thyroid hormone is associated with inhibitor of κB-α phosphorylation and nuclear factor-κB activation. Journal of Endocrinology, 2005, 186, 539-547.	2.6	47
50	Thyroid hormone-induced oxidative stress in rodents and humans: A comparative view and relation to redox regulation of gene expression. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2006, 142, 231-239.	2.6	47
51	Reversal of high-fat diet-induced hepatic steatosis by n-3 LCPUFA: role of PPAR-α and SREBP-1c. Journal of Nutritional Biochemistry, 2014, 25, 977-984.	4.2	47
52	Enhancement of Lindane-induced Liver Oxidative Stress and Hepatotoxicity by Thyroid Hormone is Reduced by Gadolinium Chloride. Free Radical Research, 2002, 36, 1033-1039.	3.3	44
53	Protection against <i>in vivo</i> liver ischemia-reperfusion injury by <i>n-3</i> long-chain polyunsaturated fatty acids in the rat. Free Radical Research, 2010, 44, 854-863.	3.3	44
54	Perspectives in liver redox imbalance: Toxicological and pharmacological aspects underlying iron overloading, nonalcoholic fatty liver disease, and thyroid hormone action. BioFactors, 2022, 48, 400-415.	5.4	44

#	Article	IF	CITATIONS
55	Effects of weight loss on liver and erythrocyte polyunsaturated fatty acid pattern and oxidative stress status in obese patients with non-alcoholic fatty liver disease. Biological Research, 2008, 41, .	3.4	43
56	Biosynthesis and bioavailability of long-chain polyunsaturated fatty acids in non-alcoholic fatty liver disease. Progress in Lipid Research, 2010, 49, 407-419.	11.6	42
57	Docosahexaenoic acid and hydroxytyrosol coâ€administration fully prevents liver steatosis and related parameters in mice subjected to highâ€fat diet: A molecular approach. BioFactors, 2019, 45, 930-943.	5.4	42
58	Thyroid Hormone Administration Induces Rat Liver Nrf2 Activation: Suppression by <i>N</i> -Acetylcysteine Pretreatment. Thyroid, 2011, 21, 655-662.	4.5	41
59	Molecular mechanisms related to the hepatoprotective effects of antioxidant-rich extra virgin olive oil supplementation in rats subjected to short-term iron administration. Free Radical Biology and Medicine, 2018, 126, 313-321.	2.9	39
60	On the mechanism of thyroid hormone-induced respiratory burst activity in rat polymorphonuclear leukocytes. Free Radical Biology and Medicine, 1995, 19, 359-363.	2.9	38
61	Influence of hyperthyroidism on lindane-induced hepatotoxicity in the rat. Biochemical Pharmacology, 1995, 50, 1557-1565.	4.4	38
62	Impact of Mitophagy and Mitochondrial Unfolded Protein Response as New Adaptive Mechanisms Underlying Old Pathologies: Sarcopenia and Non-Alcoholic Fatty Liver Disease. International Journal of Molecular Sciences, 2020, 21, 7704.	4.1	37
63	Iron-induced pro-oxidant and pro-lipogenic responses in relation to impaired synthesis and accretion of long-chain polyunsaturated fatty acids in rat hepatic and extrahepatic tissues. Nutrition, 2018, 45, 49-58.	2.4	36
64	Causal role of oxidative stress in liver preconditioning by thyroid hormone in rats. Free Radical Biology and Medicine, 2008, 44, 1724-1731.	2.9	35
65	Zymosan-induced luminol-amplified chemiluminescence of whole blood phagocytes in experimental and human hyperthyroidism. Free Radical Biology and Medicine, 1993, 14, 669-675.	2.9	33
66	The acute-phase response of the liver in relation to thyroid hormone-induced redox signaling. Free Radical Biology and Medicine, 2006, 40, 1628-1635.	2.9	33
67	Study of Cytochrome P450 2E1 and its allele Variants in Liver Injury of Nondiabetic, Nonalcoholic Steatohepatitis Obese Women. Biological Research, 2008, 41, .	3.4	33
68	Influence of the nutritional status and oxidative stress in the desaturation and elongation of n-3 and n-6 polyunsaturated fatty acids: Impact on non-alcoholic fatty liver disease. Prostaglandins Leukotrienes and Essential Fatty Acids, 2022, 181, 102441.	2.2	33
69	Lindane-Induced Oxidative Stress. II. Time Course of Changes in Hepatic Glutathione Status. Xenobiotica, 1988, 18, 1305-1310.	1.1	32
70	Prevention of liver ischemia reperfusion injury by a combined thyroid hormone and fish oil protocol. Journal of Nutritional Biochemistry, 2012, 23, 1113-1120.	4.2	32
71	Anti-steatotic effects of an n-3 LCPUFA and extra virgin olive oil mixture in the liver of mice subjected to high-fat diet. Food and Function, 2016, 7, 140-150.	4.6	32
72	Regression of morphological alterations and oxidative stress-related parameters after acute lindane-induced hepatotoxicity in rats. Toxicology, 1997, 117, 199-205.	4.2	30

#	Article	IF	CITATIONS
73	Iron-induced changes in nitric oxide and superoxide radical generation in rat liver after lindane or thyroid hormone treatment. Toxicology Letters, 2001, 119, 87-93.	0.8	30
74	ls spontaneous urinary visible chemiluminescence a reflection of in vivo oxidative stress?. Free Radical Biology and Medicine, 1992, 12, 317-322.	2.9	29
75	Free Radical Scavenging Activity of Carnosine. Free Radical Research Communications, 1991, 14, 263-270.	1.8	27
76	Potentiation of Ischemia-Reperfusion Liver Injury by Hyperthyroidism in the Rat. Free Radical Biology and Medicine, 1997, 23, 19-25.	2.9	27
77	Liver microsomal parameters related to oxidative stress and antioxidant systems in hyperthyroid rats subjected to acute lindane treatment. Free Radical Research, 1998, 29, 35-42.	3.3	27
78	Recent advances in liver preconditioning: Thyroid hormone, n-3 long-chain polyunsaturated fatty acids and iron. World Journal of Hepatology, 2012, 4, 119.	2.0	27
79	Effects of Iron Overload and Lindane Intoxication in Relation to Oxidative Stress, Kupffer Cell Function, and Liver Injury in the Rat. Toxicology and Applied Pharmacology, 2001, 170, 23-28.	2.8	26
80	Increases in Tumor Necrosis Factor-Î $_{\pm}$ in Response to Thyroid Hormone-induced Liver Oxidative Stress in the Rat. Free Radical Research, 2002, 36, 719-725.	3.3	26
81	Redox regulation of thyroid hormone-induced Kupffer cell-dependent lîºB-α phosphorylation in relation to inducible nitric oxide synthase expression. Free Radical Research, 2005, 39, 411-418.	3.3	26
82	Thyroid hormone suppresses ischemia-reperfusion-induced liver NLRP3 inflammasome activation: Role of AMP-activated protein kinase. Immunology Letters, 2017, 184, 92-97.	2.5	26
83	Crosstalk mechanisms in hepatoprotection: Thyroid hormone-docosahexaenoic acid (DHA) and DHA-extra virgin olive oil combined protocols. Pharmacological Research, 2018, 132, 168-175.	7.1	26
84	Hepatic glutathione biosynthetic capacity in hyperthyroid rat. Toxicology Letters, 1996, 89, 85-89.	0.8	25
85	Nrf2â€regulated phaseâ€II detoxification enzymes and phaseâ€III transporters are induced by thyroid hormone in rat liver. BioFactors, 2013, 39, 514-521.	5.4	25
86	The metabolic dysfunction of white adipose tissue induced in mice by a high-fat diet is abrogated by co-administration of docosahexaenoic acid and hydroxytyrosol. Food and Function, 2020, 11, 9086-9102.	4.6	25
87	Thyroid hormone calorigenesis and mitochondrial redox signaling: upregulation of gene expression. Frontiers in Bioscience - Landmark, 2007, 12, 1220.	3.0	25
88	Effect of hyperthyroidism on the biliary release of thiobarbituric acid reactants in the rat. Toxicology Letters, 1996, 84, 149-153.	0.8	22
89	Involvement of Kupffer cell-dependent signaling in T ₃ -induced hepatocyte proliferation <i>in vivo</i> . Biological Chemistry, 2007, 388, 831-837.	2.5	22
90	Liver preconditioning induced by iron in a rat model of ischemia/reperfusion. Life Sciences, 2011, 89, 221-228.	4.3	22

#	Article	IF	CITATIONS
91	Effects of Acute γ-Hexachlorocyclohexane Intoxication in Relation to the Redox Regulation of Nuclear Factor-κB, Cytokine Gene Expression, and Liver Injury in the Rat. Antioxidants and Redox Signaling, 2004, 6, 471-480.	5.4	20
92	Upregulation of rat liver PPARαâ€FGF21 signaling by a docosahexaenoic acid and thyroid hormone combined protocol. BioFactors, 2016, 42, 638-646.	5.4	20
93	Sub-chronic iron overload triggers oxidative stress development in rat brain: implications for cell protection. BioMetals, 2016, 29, 119-130.	4.1	19
94	3,3',5-Triiodothyronine-induced hepatic respiration: Effects of desferrioxamine and allopurinol in the isolated perfused rat liver. Toxicology Letters, 1993, 69, 205-210.	0.8	18
95	Tri-iodothyronine differentially induces Kupffer cell ED1/ED2 subpopulations. Molecular Aspects of Medicine, 2004, 25, 183-190.	6.4	18
96	Liver NF-κB and AP-1 activation and PPAR-α expression are negatively correlated in obese patients: Pro-inflammatory implications. Clinical Nutrition, 2010, 29, 687-688.	5.0	18
97	Upregulation of liver inducible nitric oxide synthase foliowing thyroid hormone preconditioning: suppression by N-acetylcysteine. Biological Research, 2009, 42, .	3.4	18
98	Protective Effects of Eicosapentaenoic Acid Plus Hydroxytyrosol Supplementation Against White Adipose Tissue Abnormalities in Mice Fed a High-Fat Diet. Molecules, 2020, 25, 4433.	3.8	17
99	Effects of g-hexachlorocyclohexane and L-3,3',5- triiodothyronine on rat liver cytochrome P4502E1- dependent activity and content in relation to microsomal superoxide radical generation. Biological Research, 2003, 36, 359-65.	3.4	17
100	Hormetic responses of thyroid hormone calorigenesis in the liver: Association with oxidative stress. IUBMB Life, 2010, 62, 460-466.	3.4	16
101	Causal role of oxidative stress in unfolded protein response development in the hyperthyroid state. Free Radical Biology and Medicine, 2015, 89, 401-408.	2.9	16
102	T ₃ -induced liver AMP-activated protein kinase signaling: Redox dependency and upregulation of downstream targets. World Journal of Gastroenterology, 2014, 20, 17416.	3.3	16
103	Trace quantification of 1-octacosanol and 1-triacontanol and their main metabolites in plasma by liquid–liquid extraction coupled with gas chromatography–mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 4154-4158.	2.3	15
104	Anti-oxidative and anti-inflammatory effects of Rosa Mosqueta oil supplementation in rat liver ischemia-reperfusion. Food and Function, 2018, 9, 4847-4857.	4.6	15
105	Delayed Ischemic Preconditioning Protects Against Liver Ischemia–Reperfusion Injury In Vivo. Transplantation Proceedings, 2010, 42, 1569-1575.	0.6	14
106	Thyroid hormone in the frontier of cell protection, survival and functional recovery. Expert Reviews in Molecular Medicine, 2015, 17, e10.	3.9	14
107	Dose-dependent effects of acute lindane treatment on Kupffer cell function assessed in the isolated perfused rat liver. Xenobiotica, 1997, 27, 747-757.	1.1	13
108	Kupffer-cell activity is essential for thyroid hormone rat liver preconditioning. Molecular and Cellular Endocrinology, 2010, 323, 292-297.	3.2	13

#	Article	IF	CITATIONS
109	Vanillin suppresses Kupffer cell-related colloidal carbon-induced respiratory burst activity in isolated perfused rat liver: anti-inflammatory implications. Food and Function, 2012, 3, 1319.	4.6	13
110	Hormone resuscitation therapy for brainâ€dead donors – is insulin beneficial or detrimental?. Clinical Transplantation, 2016, 30, 754-759.	1.6	13
111	Iron-induced derangement in hepatic Δ-5 and Δ-6 desaturation capacity and fatty acid profile leading to steatosis: Impact on extrahepatic tissues and prevention by antioxidant-rich extra virgin olive oil. Prostaglandins Leukotrienes and Essential Fatty Acids, 2020, 153, 102058.	2.2	13
112	N-3 PUFAs and their specialized pro-resolving lipid mediators on airway inflammatory response: beneficial effects in the prevention and treatment of respiratory diseases. Food and Function, 2022, 13, 4260-4272.	4.6	13
113	Derangement of Kupffer cell functioning and hepatotoxicity in hyperthyroid rats subjected to acute iron overload. Redox Report, 1999, 4, 243-250.	4.5	12
114	Combined administration of docosahexaenoic acid and thyroid hormone synergistically enhances rat liver levels of resolvins RvD1 and RvD2. Prostaglandins Leukotrienes and Essential Fatty Acids, 2019, 140, 42-46.	2.2	12
115	Lindane-induced liver oxidative stress: Respiratory alterations and the effect of desferrioxamine in the isolated perfused rat liver. Cell Biochemistry and Function, 1989, 7, 179-183.	2.9	11
116	Combined docosahexaenoic acid and thyroid hormone supplementation as a protocol supporting energy supply to precondition and afford protection against metabolic stress situations. IUBMB Life, 2019, 71, 1211-1220.	3.4	11
117	Influence of copper-(II) on colloidal carbon-induced kupffer cell-dependent oxygen uptake in rat liver: Relation to hepatotoxicity. Free Radical Research, 1999, 30, 489-498.	3.3	10
118	Docosahexaenoic acidâ€thyroid hormone combined protocol as a novel approach to metabolic stress disorders: Relation to mitochondrial adaptation via liver PGCâ€1α and sirtuin1 activation. BioFactors, 2019, 45, 271-278.	5.4	10
119	The oleic acid esterification of policosanol increases its bioavailability and hypocholesterolemic action in rats. Grasas Y Aceites, 2012, 63, 345-354.	0.9	9
120	Nrf2 activation in the liver of rats subjected to a preconditioning sub-chronic iron protocol. Food and Function, 2014, 5, 243-250.	4.6	9
121	Thyroid hormone therapy and procurement of livers from brain-dead donors. Endocrine Research, 2016, 41, 270-273.	1.2	9
122	Beneficial effects of natural compounds on experimental liver ischemia-reperfusion injury. Food and Function, 2021, 12, 3787-3798.	4.6	9
123	Effects of acute iron overload on Nrf2-related glutathione metabolism in rat brain. BioMetals, 2021, 34, 1017-1027.	4.1	9
124	Standpoints in mitochondrial dysfunction: Underlying mechanisms in search of therapeutic strategies. Mitochondrion, 2022, 63, 9-22.	3.4	9
125	Cytoprotective and suicidal signaling in oxidative stress. Biological Research, 2010, 43, 363-9.	3.4	9
126	Cytoprotective and suicidal signaling in oxidative stress. Biological Research, 2010, 43, .	3.4	8

#	Article	IF	CITATIONS
127	Nutrients and Diet: A Relationship between Oxidative Stress, Aging, Obesity, and Related Noncommunicable Diseases. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-1.	4.0	8
128	Acetaminophen-induced liver oxidative stress and hepatotoxicity: influence of Kupffer cell activity assessed in the isolated perfused rat liver. Redox Report, 1997, 3, 213-218.	4.5	7
129	Kupffer cell stimulation in the isolated perfused rat liver triggers nuclear factor-κB DNA binding activity. Redox Report, 2003, 8, 341-346.	4.5	7
130	Metabolic Basis for Thyroid Hormone Liver Preconditioning: Upregulation of AMP-Activated Protein Kinase Signaling. Scientific World Journal, The, 2012, 2012, 1-10.	2.1	7
131	A combined docosahexaenoic acid–thyroid hormone protocol upregulates rat liver β-Klotho expression and downstream components of FGF21 signaling as a potential novel approach to metabolic stress conditions. Food and Function, 2017, 8, 3980-3988.	4.6	7
132	N-3 Polyunsaturated Fatty Acids and Their Lipid Mediators as A Potential Immune–Nutritional Intervention: A Molecular and Clinical View in Hepatic Disease and Other Non-Communicable Illnesses. Nutrients, 2021, 13, 3384.	4.1	7
133	Reestablishment of Ischemia-Reperfusion Liver Injury by N-Acetylcysteine Administration prior to a Preconditioning Iron Protocol. Scientific World Journal, The, 2013, 2013, 1-9.	2.1	6
134	Hepatoprotective role of nitric oxide in an experimental model of chronic iron overload. Nitric Oxide - Biology and Chemistry, 2007, 16, 143-149.	2.7	5
135	Thyroid Hormone-Induced Expression of the Hepatic Scaffold Proteins Sestrin2, β-Klotho, and FRS2α in Relation to FGF21-AMPK Signaling. Experimental and Clinical Endocrinology and Diabetes, 2018, 126, 182-186.	1.2	5
136	Thyroid Hormone-Induced Cytosol-to-Nuclear Translocation of Rat Liver Nrf2 Is Dependent on Kupffer Cell Functioning. Scientific World Journal, The, 2012, 2012, 1-10.	2.1	4
137	Thyroid hormone activates rat liver adenosine 5,-monophosphate-activated protein kinase: relation to CaMKKb, TAK1 and LKB1 expression and energy status. Journal of Biological Regulators and Homeostatic Agents, 2013, 27, 989-99.	0.7	4
138	Effect of aliphatic aldehydes on the lipid peroxidation and chemiluminescence of biological systems under oxidative stress. Luminescence, 1997, 12, 141-148.	0.0	1
139	A combined iron and thyroid hormone protocol suppresses ischemia–reperfusion injury in rat livers. RSC Advances, 2015, 5, 26209-26217.	3.6	1
140	Colloidal carbon stimulation of Kupffer cells triggers Nrf2 activation in the isolated perfused rat liver. Journal of Molecular Histology, 2012, 43, 343-349.	2.2	0
141	Targeting resolvins in cholestatic liver injury. Hepatobiliary Surgery and Nutrition, 2021, 10, 689-691.	1.5	0