M S Jisha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3251729/publications.pdf

Version: 2024-02-01

		331259	233125
56	2,218	21	45
papers	citations	h-index	g-index
56	56	56	2777
30	30	30	2///
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Chitosan nanoparticles preparation and applications. Environmental Chemistry Letters, 2018, 16, 101-112.	8.3	395
2	Surfactants: toxicity, remediation and green surfactants. Environmental Chemistry Letters, 2014, 12, 275-287.	8.3	275
3	Antimicrobial properties of chitosan nanoparticles: Mode of action and factors affecting activity. Fibers and Polymers, 2017, 18, 221-230.	1.1	241
4	Chlorpyrifos: pollution and remediation. Environmental Chemistry Letters, 2015, 13, 269-291.	8.3	216
5	Antifungal, antioxidant and cytotoxic activities of chitosan nanoparticles and its use as an edible coating on vegetables. International Journal of Biological Macromolecules, 2018, 114, 572-577.	3.6	120
6	Characterization and in planta nitrogen fixation of plant growth promoting endophytic diazotrophic Lysinibacillus sphaericus isolated from rice (Oryza sativa). Physiological and Molecular Plant Pathology, 2018, 102, 46-54.	1.3	69
7	Phosphate Solubilizing Gluconacetobacter sp., Burkholderia sp. and their Potential Interaction with Cowpea (Vigna unguiculata (L.) Walp.). International Journal of Agricultural Research, 2009, 4, 79-87.	0.0	50
8	Plant Growth Promoting Traits of Indigenous Phosphate Solubilizing <i>Pseudomonas aeruginosa</i> Isolates from Chilli (<i>Capsicum</i> annuum L.) Rhizosphere. Communications in Soil Science and Plant Analysis, 2019, 50, 444-457.	0.6	45
9	Biodegradation of the Anionic Surfactant Linear Alkylbenzene Sulfonate (LAS) by Autochthonous Pseudomonas sp Water, Air, and Soil Pollution, 2012, 223, 5039-5048.	1.1	41
10	Optimization of chitosan nanoparticle synthesis and its potential application as germination elicitor of Oryza sativa L International Journal of Biological Macromolecules, 2019, 124, 1053-1059.	3.6	40
11	Growth enhancement of rice (Oryza sativa) by phosphate solubilizing Gluconacetobacter sp. (MTCC) Tj ETQq1 1	0.784314	+ rggT /Overlo
12	Biocontrol potential of Halotolerant bacterial chitinase from high yielding novel Bacillus Pumilus MCB-7 autochthonous to mangrove ecosystem. Pesticide Biochemistry and Physiology, 2017, 137, 36-41.	1.6	39
13	A potential antifungal and growth-promoting bacterium Bacillus sp. KTMA4 from tomato rhizosphere. Microbial Pathogenesis, 2020, 142, 104049.	1.3	35
14	In vitro and in silico docking studies of antibacterial compounds derived from endophytic Penicillium setosum. Microbial Pathogenesis, 2019, 131, 87-97.	1.3	34
15	Nutrient uptake and yield of sorghum (Sorghum bicolor L. Moench) inoculated with phosphate solubilizing bacteria and cellulolytic fungus in a cotton stalk amended vertisol. Microbiological Research, 1996, 151, 213-217.	2.5	33
16	Surfactants: Chemistry, Toxicity and Remediation. Environmental Chemistry for A Sustainable World, 2013, , 277-320.	0.3	33
17	Exploring the efficacy of antagonistic rhizobacteria as native biocontrol agents against tomato plant diseases. 3 Biotech, 2020, 10, 320.	1.1	31
18	Thermal properties of tannin extracted from <i>Anacardium occidentale L</i> . using TGA and FT-IR spectroscopy. Natural Product Research, 2016, 30, 223-227.	1.0	30

#	Article	IF	Citations
19	Biosurfactant Facilitated Biodegradation of Quinalphos at High Concentrations by <i>Pseudomonas aeruginosa < /i> Q10. Soil and Sediment Contamination, 2015, 24, 542-553.</i>	1.1	29
20	Biogenic Synthesis of Silver Nanoparticles Using Endophytic Fungi <i>Fusarium oxysporum </i> Isolated from <i>Withania somnifera </i> Isolated from <i>Withania somnifer</i>	0.4	27
21	Optimization of Chlorpyrifos Degradation by Assembled Bacterial Consortium Using Response Surface Methodology. Soil and Sediment Contamination, 2016, 25, 668-682.	1.1	26
22	Induction of defence response in Oryza sativa L. against Rhizoctonia solani (Kuhn) by chitosan nanoparticles. Microbial Pathogenesis, 2020, 149, 104525.	1.3	26
23	Plasmid-Mediated Biodegradation of the Anionic Surfactant Sodium Dodecyl Sulphate, by Pseudomonas aeruginosa S7. Bulletin of Environmental Contamination and Toxicology, 2011, 86, 110-113.	1.3	24
24	Bioprospecting endophytic diazotrophic Lysinibacillus sphaericus as biocontrol agents of rice sheath blight disease. 3 Biotech, 2017, 7, 337.	1.1	24
25	Quinoline derivatives producing Pseudomonas aeruginosa H6 as an efficient bioherbicide for weed management. Biocatalysis and Agricultural Biotechnology, 2019, 18, 101096.	1.5	20
26	Optimised production of chitinase from a novel mangrove isolate, Bacillus pumilus MCB-7 using response surface methodology. Biocatalysis and Agricultural Biotechnology, 2016, 5, 143-149.	1.5	19
27	Bioconversion of Sodium Dodecyl Sulphate to Rhamnolipid by Pseudomonas aeruginosa: A Novel and Cost-Effective Production Strategy. Applied Biochemistry and Biotechnology, 2013, 169, 418-430.	1.4	17
28	Plasmid-Mediated Biodegradation of Chlorpyrifos and Analysis of Its Metabolic By-Products. Current Microbiology, 2020, 77, 3095-3103.	1.0	16
29	Combined Inoculation of Pseudomonas fluorescens and Trichoderma harzianum for Enhancing Plant Growth of Vanilla (Vanilla planifolia). Pakistan Journal of Biological Sciences, 2013, 16, 580-584.	0.2	16
30	Chemotaxonomic profiling of Penicillium setosum using high-resolution mass spectrometry (LC-Q-ToF-MS). Heliyon, 2019, 5, e02484.	1.4	15
31	Biodegradation of petroleum based and bio-based plastics: approaches to increase the rate of biodegradation. Archives of Microbiology, 2022, 204, 258.	1.0	15
32	Pseudomonas plecoglossicida S5, a novel nonpathogenic isolate for sodium dodecyl sulfate degradation. Environmental Chemistry Letters, 2015, 13, 117-123.	8.3	14
33	Metabolic profile of sodium dodecyl sulphate (SDS) biodegradation by Pseudomonas aeruginosa (MTCC 10311). Journal of Environmental Biology, 2014, 35, 827-31.	0.2	13
34	In vitro anticancer evaluation of chitosan/biogenic silver nanoparticle conjugate on Si Ha and MDA MB cell lines. Applied Nanoscience (Switzerland), 2020, 10, 715-728.	1.6	12
35	Enhancement of Growth and Yield of Rice (Oryza Sativa) by Plant Probiotic Endophyte, Lysinibacillus sphaericus under Greenhouse Conditions. Communications in Soil Science and Plant Analysis, 2020, 51, 1268-1282.	0.6	12
36	Biodegradation of anionic surfactant, sodium dodecyl sulphate by Pseudomonas aeruginosa MTCC 10311. Journal of Environmental Biology, 2012, 33, 717-20.	0.2	11

#	Article	IF	Citations
37	Biosynthesis of tannase from cashew testa using Aspergillus niger MTCC5889 by solid state fermentation. Journal of Food Science and Technology, 2015, 52, 7433-7440.	1.4	10
38	Molecular Docking Study of Bioactive Compounds of Withania somnifera Extract Against Topoisomerase IV Type B. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2020, 90, 381-390.	0.4	10
39	Biodegradation of chlorpyrifos by an optimized <i>Bacillus</i> consortium isolated from pesticide-contaminated soils of Kerala, India. International Journal of Pest Management, 0, , 1-9.	0.9	10
40	Antifungal Efficacy of Chitosan-Stabilized Biogenic Silver Nanoparticles against Pathogenic Candida spp. Isolated from Human. BioNanoScience, 2020, 10, 974-982.	1.5	9
41	Optimized Production of Tannase from Cashew Testa using <i>Aspergillus niger </i> MTCC 5898. Food Biotechnology, 2016, 30, 249-262.	0.6	8
42	<i>Penicillium setosum</i> , a new species from <i>Withania somnifera</i> (L.) Dunal. Mycology, 2019, 10, 49-60.	2.0	7
43	Pseudomonas taiwanensis (MTCC11631) mediated induction of systemic resistance in Anthurium andreanum L against blight disease and visualisation of defence related secondary metabolites using confocal laser scanning microscopy. Biocatalysis and Agricultural Biotechnology, 2020, 24, 101561.	1.5	7
44	Strategies in microbial degradation enhancement of chlorpyrifos – a review based on the primary approaches in soil bioremediation. Biocatalysis and Biotransformation, 2022, 40, 83-94.	1.1	7
45	Assessment of Soil Microbial Toxicity on Acute Exposure of the Anionic Surfactant Linear Alkylbenzene Sulphonate. Journal of Environmental Science and Technology, 2012, 5, 354-363.	0.3	7
46	Chitosan nanoparticles as a rice growth promoter: evaluation of biological activity. Archives of Microbiology, 2022, 204, 95.	1.0	7
47	Production and Optimization of Extra Cellular L-asparaginase by <i>Fusarium solani</i> Isolated from <i>Withania sominifera</i> Journal of Biologically Active Products From Nature, 2017, 7, 81-88.	0.1	6
48	Characterization of the major antifungal extrolite from rice endophyte Lysinibacillus sphaericus against Rhizoctonia solani. Archives of Microbiology, 2021, 203, 2605-2613.	1.0	6
49	Bioconversion of sodium dodecyl sulphate to rhamnolipids by transformed Escherichia coli DH5α cells-a novel strategy for rhamnolipid synthesis. Journal of Applied Microbiology, 2016, 120, 638-646.	1.4	5
50	A novel three-stage bioreactor for the effective detoxification of sodium dodecyl sulphate from wastewater. Water Science and Technology, 2017, 76, 2167-2176.	1.2	5
51	Sequence analysis and docking performance of extracellular chitinase from Bacillus pumilus MCB-7, a novel mangrove isolate. Enzyme and Microbial Technology, 2020, 140, 109624.	1.6	4
52	Screening and identification of potential <i>Trichoderma </i> sp. against soil borne pathogens of vanilla (<i>Vanilla planifolia </i>). Indian Journal of Agricultural Research, 2014, 48, 459.	0.0	3
53	Characterization of Bioactive Metabolites of Endophytic <i>Fusarium solani</i> Isolated from <i>Withania somnifera</i> Isolated from <i>Withania somnifera</i> Isolated from <i>Isolated from</i> Isolated fromIsolated from	0.1	2
54	Bacillus spp. Facilitated Abiotic Stress Mitigation in Rice. Bacilli in Climate Resilient Agriculture and Bioprospecting, 2022, , 285-318.	0.6	2

#	Article	IF	CITATIONS
55	Biomodulatory Role of Enterobacer Sp: A Novel Bacterial Endophyte of Sida cordifolia and its Comparative Analysis with Plant Extract. Journal of Biologically Active Products From Nature, 2016, 6, 373-382.	0.1	1
56	Remediation of chlorpyrifos in soil using immobilized bacterial consortium biostimulated with organic amendment. Biocatalysis and Biotransformation, 0 , , 1 - 9 .	1.1	0