
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3251621/publications.pdf Version: 2024-02-01

HONCLIN

#	Article	IF	CITATIONS
1	Atomic Chromium Coordinated Graphitic Carbon Nitride for Bioinspired Antibiofouling in Seawater. Advanced Science, 2022, 9, e2105346.	11.2	27
2	Artemisinin-passivated mixed-cation perovskite films for durable flexible perovskite solar cells with over 21% efficiency. Journal of Materials Chemistry A, 2021, 9, 1574-1582.	10.3	126
3	Recent Advances in Carbon Nanotube Utilizations in Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2004765.	14.9	37
4	Recent progress in meniscus coating for large-area perovskite solar cells and solar modules. Sustainable Energy and Fuels, 2021, 5, 1926-1951.	4.9	11
5	A highly-efficient concentrated perovskite solar cell-thermoelectric generator tandem system. Journal of Energy Chemistry, 2021, 59, 730-735.	12.9	16
6	To Be Higher and Stronger—Metal Oxide Electron Transport Materials for Perovskite Solar Cells. Small, 2020, 16, e1902579.	10.0	80
7	Improved phase stability of γ-CsPbI ₃ perovskite nanocrystals using the interface effect using iodine modified graphene oxide. Journal of Materials Chemistry C, 2020, 8, 2569-2578.	5.5	18
8	Enhanced Photocatalytic Property of γ-CsPbI ₃ Perovskite Nanocrystals with WS ₂ . ACS Sustainable Chemistry and Engineering, 2020, 8, 1219-1229.	6.7	33
9	Gamma-phase CsPbBr3 perovskite nanocrystals/polymethyl methacrylate electrospun nanofibrous membranes with superior photo-catalytic property. Journal of Chemical Physics, 2020, 153, 024703.	3.0	14
10	A novel 2D perovskite as surface "patches―for efficient flexible perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 7808-7818.	10.3	48
11	Boosting Multiple Interfaces by Co-Doped Graphene Quantum Dots for High Efficiency and Durability Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 13941-13949.	8.0	69
12	Suppressed phase transition of a Rb/K incorporated inorganic perovskite with a water-repelling surface. Nanoscale, 2020, 12, 6571-6581.	5.6	8
13	Dual Role of Amino-Functionalized Graphene Quantum Dots in NiO <i>_x</i> Films for Efficient Inverted Flexible Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 8342-8350.	8.0	56
14	Exfoliated Fluorographene Quantum Dots as Outstanding Passivants for Improved Flexible Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 22992-23001.	8.0	38
15	Goethite Quantum Dots as Multifunctional Additives for Highly Efficient and Stable Perovskite Solar Cells. Small, 2019, 15, e1904372.	10.0	32
16	Improved Moisture Stability of Perovskite Solar Cells Using N719 Dye Molecules. Solar Rrl, 2019, 3, 1900345.	5.8	30
17	High Efficient Large-area Perovskite Solar Cells Based on Paintable Carbon Electrode with NiO Nanocrystal-carbon Intermediate Layer. Chemistry Letters, 2019, 48, 734-737.	1.3	8
18	Flexible quintuple cation perovskite solar cells with high efficiency. Journal of Materials Chemistry A, 2019, 7, 4960-4970.	10.3	93

#	Article	IF	CITATIONS
19	All Solutionâ€Processed Cu ₂ ZnSnS ₄ Solar Cell by Using Highâ€Boilingâ€Point Solvent Treated Ballâ€Milling Process with Efficiency Exceeding 6%. ChemistrySelect, 2019, 4, 982-989.	1.5	4
20	Critical roles of potassium in charge-carrier balance and diffusion induced defect passivation for efficient inverted perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 5666-5676.	10.3	62
21	Enhancing electron transport <i>via</i> graphene quantum dot/SnO ₂ composites for efficient and durable flexible perovskite photovoltaics. Journal of Materials Chemistry A, 2019, 7, 1878-1888.	10.3	67
22	Allâ€Layer Sputteringâ€Free Cu2Zn1â€xCdxSnS4 Solar Cell with Efficiency Exceeding 7.5%. ChemistrySelect, 2019, 4, 5979-5983.	1.5	1
23	An Excellent Modifier: Carbon Quantum Dots for Highly Efficient Carbonâ€Electrodeâ€Based Methylammonium Lead Iodide Solar Cells. Solar Rrl, 2019, 3, 1900146.	5.8	27
24	In situ growth of α-CsPbI3 perovskite nanocrystals on the surface of reduced graphene oxide with enhanced stability and carrier transport quality. Journal of Materials Chemistry C, 2019, 7, 6795-6804.	5.5	31
25	Perovskite solar cell-thermoelectric tandem system with a high efficiency of over 23%. Materials Today Energy, 2019, 12, 363-370.	4.7	30
26	<i>In situ</i> formation of a 2D/3D heterostructure for efficient and stable CsPbI ₂ Br solar cells. Journal of Materials Chemistry A, 2019, 7, 22675-22682.	10.3	63
27	Synergistic effect of charge separation and defect passivation using zinc porphyrin dye incorporation for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 26334-26341.	10.3	44
28	Band alignment and charge transfer in CsPbBr3–CdSe nanoplatelet hybrids coupled by molecular linkers. Journal of Chemical Physics, 2019, 151, 174704.	3.0	18
29	Improved Moisture Stability of Perovskite Solar Cells Using N719 Dye Molecules. Solar Rrl, 2019, 3, 1970115.	5.8	1
30	Reduced Graphene Oxide/CZTS _x Se _{1â€x} Composites as a Novel Holeâ€Transport Functional Layer in Perovskite Solar Cells. ChemElectroChem, 2019, 6, 1500-1507.	3.4	9
31	Efficient Inorganic Cesium Lead Mixedâ€Halide Perovskite Solar Cells Prepared by Flashâ€Evaporation Printing. Energy Technology, 2019, 7, 1800986.	3.8	7
32	Ultrathin Zn2SnO4 (ZTO) passivated ZnO nanocone arrays for efficient and stable perovskite solar cells. Chemical Engineering Journal, 2019, 361, 60-66.	12.7	39
33	Competition between Metallic and Vacancy Defect Conductive Filaments in a CH ₃ NH ₃ PbI ₃ Based Memory Device. Journal of Physical Chemistry C, 2018, 122, 6431-6436.	3.1	115
34	Bending Durable and Recyclable Mesostructured Perovskite Solar Cells Based on Superaligned ZnO Nanorod Electrode. Solar Rrl, 2018, 2, 1700194.	5.8	25
35	Perovskite solar cells: must lead be replaced – and can it be done?. Science and Technology of Advanced Materials, 2018, 19, 425-442.	6.1	151
36	Tunable Crystallization and Nucleation of Planar CH ₃ NH ₃ Pbl ₃ through Solvent-Modified Interdiffusion. ACS Applied Materials & Interfaces, 2018, 10, 14673-14683.	8.0	14

#	Article	IF	CITATIONS
37	Allâ€Carbonâ€Electrodeâ€Based Endurable Flexible Perovskite Solar Cells. Advanced Functional Materials, 2018, 28, 1706777.	14.9	242
38	Allâ€Solutionâ€Processed Cu ₂ ZnSnS ₄ Solar Cells with Selfâ€Depleted Na ₂ S Back Contact Modification Layer. Advanced Functional Materials, 2018, 28, 1703369.	14.9	36
39	Bifacial Modified Charge Transport Materials for Highly Efficient and Stable Inverted Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 17861-17870.	8.0	29
40	Solution-processed Kesterite Cu ₂ ZnSnS ₄ as Efficient Hole Extraction Layer for Inverted Perovskite Solar Cells. Chemistry Letters, 2018, 47, 817-820.	1.3	9
41	Perovskite Solar Cells: Allâ€Carbonâ€Electrodeâ€Based Endurable Flexible Perovskite Solar Cells (Adv.) Tj ETQq1	1	.4 ggBT /Ove
42	Cost effective synthesis of p-type Zn-doped MgAgSb by planetary ball-milling with enhanced thermoelectric properties. RSC Advances, 2018, 8, 35353-35359.	3.6	17
43	Perovskite/Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] Bulk Heterojunction for High-Efficient Carbon-Based Large-Area Solar Cells by Gradient Engineering. ACS Applied Materials & Interfaces, 2018, 10, 42328-42334.	8.0	37
44	Thiazole-Induced Surface Passivation and Recrystallization of CH ₃ NH ₃ PbI ₃ Films for Perovskite Solar Cells with Ultrahigh Fill Factors. ACS Applied Materials & Interfaces, 2018, 10, 42436-42443.	8.0	49
45	Highly efficient inverted perovskite solar cells based on self-assembled graphene derivatives. Journal of Materials Chemistry A, 2018, 6, 20702-20711.	10.3	22
46	New insights into the origin of hysteresis behavior in perovskite solar cells. Physical Chemistry Chemical Physics, 2018, 20, 16285-16293.	2.8	7
47	Role of TiO ₂ Thickness on Depletion Properties of TiO ₂ /CH ₃ NH ₃ Pbl ₃ Heterojunction. Chemistry Letters, 2018, 47, 1055-1058.	1.3	4
48	Realizing zinc-doping of CdS buffer layer via partial electrolyte treatment to improve the efficiency of Cu2ZnSnS4 solar cells. Chemical Engineering Journal, 2018, 351, 791-798.	12.7	11
49	Inverted Perovskite Solar Cells with Efficient Mixedâ€Fullerene Derivative Charge Extraction Layers. ChemistrySelect, 2018, 3, 6802-6809.	1.5	13
50	Hybrid PbS Quantumâ€Dotâ€inâ€Perovskite for Highâ€Efficiency Perovskite Solar Cell. Small, 2018, 14, e180101	.610.0	111
51	Laser-Induced Flash-Evaporation Printing CH ₃ NH ₃ PbI ₃ Thin Films for High-Performance Planar Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 26206-26212.	8.0	10
52	Role of alkyl chain length in diaminoalkane linked 2D Ruddlesden–Popper halide perovskites. CrystEngComm, 2018, 20, 6704-6712.	2.6	25
53	Efficiently Improving the Stability of Inverted Perovskite Solar Cells by Employing Polyethylenimine-Modified Carbon Nanotubes as Electrodes. ACS Applied Materials & Interfaces, 2018, 10, 31384-31393.	8.0	68
54	Nucleation, Growth, and Structural Transformations of Perovskite Nanocrystals. Chemistry of Materials, 2017, 29, 1302-1308.	6.7	188

#	Article	IF	CITATIONS
55	CH ₃ NH ₃ PbI ₃ grain growth and interfacial properties in meso-structured perovskite solar cells fabricated by two-step deposition. Science and Technology of Advanced Materials, 2017, 18, 253-262.	6.1	42
56	Vertically aligned ZnO/ZnTe core/shell heterostructures on an AZO substrate for improved photovoltaic performance. RSC Advances, 2017, 7, 14837-14845.	3.6	10
57	Ni-doped α-Fe 2 O 3 as electron transporting material for planar heterojunction perovskite solar cells with improved efficiency, reduced hysteresis and ultraviolet stability. Nano Energy, 2017, 38, 193-200.	16.0	75
58	Strain-Induced Type II Band Alignment Control in CdSe Nanoplatelet/ZnS-Sensitized Solar Cells. Journal of Physical Chemistry C, 2017, 121, 11136-11143.	3.1	28
59	Hematite electron-transporting layers for environmentally stable planar perovskite solar cells with enhanced energy conversion and lower hysteresis. Journal of Materials Chemistry A, 2017, 5, 1434-1441.	10.3	95
60	Experimental and simulation-based understanding of morphology controlled barium titanate nanoparticles under co-adsorption of surfactants. CrystEngComm, 2017, 19, 3288-3298.	2.6	190
61	High Efficiency Inverted Planar Perovskite Solar Cells with Solution-Processed NiO _{<i>x</i>} Hole Contact. ACS Applied Materials & Interfaces, 2017, 9, 2439-2448.	8.0	139
62	Cesium-Containing Perovskite Solar Cell Based on Graphene/TiO ₂ Electron Transport Layer. ChemistrySelect, 2017, 2, 9433-9437.	1.5	21
63	Rational Design of Solution-Processed Ti–Fe–O Ternary Oxides for Efficient Planar CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells with Suppressed Hysteresis. ACS Applied Materials & Interfaces, 2017, 9, 34833-34843.	8.0	21
64	Carbon Nanotube Based Inverted Flexible Perovskite Solar Cells with Allâ€Inorganic Charge Contacts. Advanced Functional Materials, 2017, 27, 1703068.	14.9	132
65	Enhancing the Performance of Perovskite Solar Cells by Hybridizing SnS Quantum Dots with CH ₃ NH ₃ PbI ₃ . Small, 2017, 13, 1700953.	10.0	73
66	Improved efficient perovskite solar cells based on Ta-doped TiO ₂ nanorod arrays. Nanoscale, 2017, 9, 18897-18907.	5.6	59
67	Perovskite photodetectors prepared by flash evaporation printing. RSC Advances, 2017, 7, 34795-34800.	3.6	8
68	Flash-evaporation printing methodology for perovskite thin films. NPG Asia Materials, 2017, 9, e395-e395.	7.9	17
69	Facile in situ synthesis of dendrite-like ZnO/ZnTe core/shell nanorod heterostructures for sensitized solar cells. Journal of Materials Chemistry C, 2016, 4, 4740-4747.	5.5	24
70	Efficient Perovskite Solar Cells Depending on TiO ₂ Nanorod Arrays. ACS Applied Materials & Interfaces, 2016, 8, 21358-21365.	8.0	126
71	Inhibition of charge transfer and recombination processes in CdS/N719 co-sensitized solar cell with high conversion efficiency. Electrochimica Acta, 2016, 191, 16-22.	5.2	17
72	Preheating-assisted deposition of solution-processed perovskite layer for an efficiency-improved inverted planar composite heterojunction solar cell. RSC Advances, 2016, 6, 30978-30985.	3.6	28

#	Article	IF	CITATIONS
73	Improved charge separation and transport efficiency in panchromatic-sensitized solar cells with co-sensitization of PbS/CdS/ZnS quantum dots and dye molecules. RSC Advances, 2016, 6, 21156-21164.	3.6	17
74	Working from Both Sides: Composite Metallic Semitransparent Top Electrode for High Performance Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 4523-4531.	8.0	56
75	Aluminum-Doped Zinc Oxide as Highly Stable Electron Collection Layer for Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 7826-7833.	8.0	188
76	Cross-stacked superaligned carbon nanotube electrodes for efficient hole conductor-free perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 5569-5577.	10.3	92
77	Enhancing the Brightness of Cesium Lead Halide Perovskite Nanocrystal Based Green Light-Emitting Devices through the Interface Engineering with Perfluorinated Ionomer. Nano Letters, 2016, 16, 1415-1420.	9.1	685
78	Preparation of aluminum doped zinc oxide films with low resistivity and outstanding transparency by a sol–gel method for potential applications in perovskite solar cell. Thin Solid Films, 2016, 605, 208-214.	1.8	18
79	Recent progress in efficient hybrid lead halide perovskite solar cells. Science and Technology of Advanced Materials, 2015, 16, 036004.	6.1	87
80	lodide-reduced graphene oxide with dopant-free spiro-OMeTAD for ambient stable and high-efficiency perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 15996-16004.	10.3	134
81	Charge selective contacts, mobile ions and anomalous hysteresis in organic–inorganic perovskite solar cells. Materials Horizons, 2015, 2, 315-322.	12.2	366
82	Effect of cationic groups in organic sulfide electrolyte on the performance of CdS quantum dot sensitized solar cells. Science Bulletin, 2014, 59, 3209-3215.	1.7	0
83	Low temperature reduction of free-standing graphene oxide papers with metal iodides for ultrahigh bulk conductivity. Scientific Reports, 2014, 4, 3965.	3.3	43
84	Type-II Quantum-Dot-Sensitized Solar Cell Spanning the Visible and Near-Infrared Spectrum. Journal of Physical Chemistry C, 2013, 117, 22203-22210.	3.1	58
85	Study of Quantum Dot/Inorganic Layer/Dye Molecule Sandwich Structure for Electrochemical Solar Cells. Journal of Physical Chemistry C, 2012, 116, 15185-15191.	3.1	18
86	The effect of dispersion of TiO2 nanoparticles on preparation of flexible dye-sensitized photoanodes. Science China: Physics, Mechanics and Astronomy, 2012, 55, 1203-1209.	5.1	2
87	Low-cost preparation of a conductive and catalytic graphene film from chemical reduction with AlI3. Carbon, 2012, 50, 3497-3502.	10.3	20
88	Electrolyte-dependent photovoltaic responses in dye-sensitized solar cells. Frontiers of Optoelectronics in China, 2011, 4, 45-52.	0.2	1