Liubing Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3251481/publications.pdf Version: 2024-02-01

LUBING DONG

#	Article	IF	CITATIONS
1	Zinc-based energy storage with functionalized carbon nanotube/polyaniline nanocomposite cathodes. Chemical Engineering Journal, 2022, 427, 131799.	6.6	68
2	Layer-by-layer zinc metal anodes to achieve long-life zinc-ion batteries. Chemical Engineering Journal, 2022, 431, 133902.	6.6	32
3	Unraveling dynamical behaviors of zinc metal electrodes in aqueous electrolytes through an operando study. Energy Storage Materials, 2022, 46, 243-251.	9.5	31
4	Aerogel-structured MnO2 cathode assembled by defect-rich ultrathin nanosheets for zinc-ion batteries. Chemical Engineering Journal, 2022, 441, 136008.	6.6	57
5	Stable Zinc Anodes Enabled by Zincophilic Cu Nanowire Networks. Nano-Micro Letters, 2022, 14, 39.	14.4	91
6	Reversible aqueous zinc-ion battery based on ferric vanadate cathode. Chinese Chemical Letters, 2022, 33, 4628-4634.	4.8	25
7	MoS2 with high 1T phase content enables fast reversible zinc-ion storage via pseudocapacitance. Chemical Engineering Journal, 2022, 448, 137688.	6.6	24
8	Printable Zinc-Ion Hybrid Micro-Capacitors for Flexible Self-Powered Integrated Units. Nano-Micro Letters, 2021, 13, 19.	14.4	81
9	Hierarchical ZnO nanorod arrays grown on copper foam as an advanced three-dimensional skeleton for dendrite-free sodium metal anodes. Nano Energy, 2021, 80, 105563.	8.2	87
10	Simultaneously Regulating Uniform Zn2+ Flux and Electron Conduction by MOF/rGO Interlayers for High-Performance Zn Anodes. Nano-Micro Letters, 2021, 13, 73.	14.4	106
11	Towards High-Energy and Anti-Self-Discharge Zn-Ion Hybrid Supercapacitors with New Understanding of the Electrochemistry. Nano-Micro Letters, 2021, 13, 95.	14.4	115
12	Flexible, all-hydrogel supercapacitor with self-healing ability. Chemical Engineering Journal, 2021, 418, 128616.	6.6	101
13	High-performance zinc-ion batteries enabled by electrochemically induced transformation of vanadium oxide cathodes. Journal of Energy Chemistry, 2021, 60, 233-240.	7.1	65
14	Stabilizing CsPbBr3 perovskite quantum dots on zirconium phosphate nanosheets through an ion exchange/surface adsorption strategy. Chemical Engineering Journal, 2020, 381, 122735.	6.6	26
15	3D Oxygenâ€Defective Potassium Vanadate/Carbon Nanoribbon Networks as Highâ€Performance Cathodes for Aqueous Zincâ€Ion Batteries. Small Methods, 2020, 4, 1900670.	4.6	124
16	Highly stretchable, compressible and arbitrarily deformable all-hydrogel soft supercapacitors. Chemical Engineering Journal, 2020, 383, 123098.	6.6	133
17	Flexible and conductive scaffold-stabilized zinc metal anodes for ultralong-life zinc-ion batteries and zinc-ion hybrid capacitors. Chemical Engineering Journal, 2020, 384, 123355.	6.6	188
18	K ₂ Ti ₂ O ₅ @C Microspheres with Enhanced K ⁺ Intercalation Pseudocapacitance Ensuring Fast Potassium Storage and Longâ€Term Cycling Stability. Small, 2020, 16, e1906131.	5.2	49

LIUBING DONG

#	Article	IF	CITATIONS
19	High-Performance Aqueous Zinc-Ion Batteries Realized by MOF Materials. Nano-Micro Letters, 2020, 12, 152.	14.4	141
20	Few-layer Ti3C2T MXene delaminated via flash freezing for high-rate electrochemical capacitive energy storage. Journal of Energy Chemistry, 2020, 48, 233-240.	7.1	27
21	Layered vanadium oxides with proton and zinc ion insertion for zinc ion batteries. Electrochimica Acta, 2019, 320, 134565.	2.6	143
22	Enhanced Hydrogenation Performance over Hollow Structured Co oO <i>x</i> @N Capsules. Advanced Science, 2019, 6, 1900807.	5.6	79
23	High-Power and Ultralong-Life Aqueous Zinc-Ion Hybrid Capacitors Based on Pseudocapacitive Charge Storage. Nano-Micro Letters, 2019, 11, 94.	14.4	108
24	Room-Temperature Synthesis of Two-Dimensional Hexagonal Boron Nitride Nanosheet-Stabilized CsPbBr ₃ Perovskite Quantum Dots. ACS Applied Materials & Interfaces, 2019, 11, 8242-8249.	4.0	50
25	Unlocking Fewâ€Layered Ternary Chalcogenides for Highâ€Performance Potassiumâ€lon Storage. Advanced Energy Materials, 2019, 9, 1901560.	10.2	53
26	Novel Insights into Energy Storage Mechanism of Aqueous Rechargeable Zn/MnO2 Batteries with Participation of Mn2+. Nano-Micro Letters, 2019, 11, 49.	14.4	166
27	Enabling immobilization and conversion of polysulfides through a nitrogen-doped carbon nanotubes/ultrathin MoS ₂ nanosheet core–shell architecture for lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 13103-13112.	5.2	102
28	Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors. Journal of Materials Chemistry A, 2019, 7, 13810-13832.	5.2	312
29	Submicroreactors: Enhanced Hydrogenation Performance over Hollow Structured Co oO <i>x</i> @N Capsules (Adv. Sci. 22/2019). Advanced Science, 2019, 6, 1970135.	5.6	3
30	3D Porous Copper Skeleton Supported Zinc Anode toward High Capacity and Long Cycle Life Zinc Ion Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 3364-3371.	3.2	387
31	Multivalent ion storage towards high-performance aqueous zinc-ion hybrid supercapacitors. Energy Storage Materials, 2019, 20, 335-342.	9.5	221
32	One-Step Preparation of Long-Term Stable and Flexible CsPbBr ₃ Perovskite Quantum Dots/Ethylene Vinyl Acetate Copolymer Composite Films for White Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 15888-15894.	4.0	163
33	A Nacreâ€Like Carbon Nanotube Sheet for High Performance Liâ€Polysulfide Batteries with High Sulfur Loading. Advanced Science, 2018, 5, 1800384.	5.6	39
34	Facile Preparation of Highâ€Performance Stretchable Fiber‣ike Electrodes and Supercapacitors. ChemistrySelect, 2018, 3, 4179-4184.	0.7	16
35	Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors. Energy Storage Materials, 2018, 13, 96-102.	9.5	568
36	Polymorphous Supercapacitors Constructed from Flexible Three-Dimensional Carbon Network/Polyaniline/MnO ₂ Composite Textiles. ACS Applied Materials & Interfaces, 2018, 10, 10851-10859.	4.0	65

LIUBING DONG

#	Article	IF	CITATIONS
37	Electrochemically induced spinel-layered phase transition of Mn3O4 in high performance neutral aqueous rechargeable zinc battery. Electrochimica Acta, 2018, 259, 170-178.	2.6	269
38	Self-assembly of 2D-metal–organic framework/graphene oxide membranes as highly efficient adsorbents for the removal of Cs ⁺ from aqueous solutions. RSC Advances, 2018, 8, 40813-40822.	1.7	48
39	Binary and Ternary Manganese Dioxide Composites Cathode for Aqueous Zincâ€ion Battery. ChemistrySelect, 2018, 3, 12661-12665.	0.7	15
40	Editable asymmetric all-solid-state supercapacitors based on high-strength, flexible, and programmable 2D-metal–organic framework/reduced graphene oxide self-assembled papers. Journal of Materials Chemistry A, 2018, 6, 20254-20266.	5.2	110
41	Microhoneycomb Monoliths Prepared by the Unidirectional Freeze-drying of Cellulose Nanofiber Based Sols: Method and Extensions. Journal of Visualized Experiments, 2018, , .	0.2	1
42	Origin of storage capacity enhancement by replacing univalent ion with multivalent ion for energy storage. Electrochimica Acta, 2018, 282, 30-37.	2.6	11
43	A Hollow Spherical Carbon Derived from the Spray Drying of Corncob Lignin for Highâ€Rateâ€Performance Supercapacitors. Chemistry - an Asian Journal, 2017, 12, 503-506.	1.7	29
44	Comprehensive approaches to three-dimensional flexible supercapacitor electrodes based on MnO2/carbon nanotube/activated carbon fiber felt. Journal of Materials Science, 2017, 52, 5788-5798.	1.7	24
45	Manganese Sesquioxide as Cathode Material for Multivalent Zinc Ion Battery with High Capacity and Long Cycle Life. Electrochimica Acta, 2017, 229, 422-428.	2.6	329
46	Multi hierarchical construction-induced superior capacitive performances of flexible electrodes for wearable energy storage. Nano Energy, 2017, 34, 242-248.	8.2	122
47	Effective nondestructive evaluations on UHMWPE/Recycled-PA6 blends using FTIR imaging and dynamic mechanical analysis. Polymer Testing, 2017, 59, 371-376.	2.3	36
48	Investigation of zinc ion storage of transition metal oxides, sulfides, and borides in zinc ion battery systems. Chemical Communications, 2017, 53, 6872-6874.	2.2	147
49	Stacking up layers of polyaniline/carbon nanotube networks inside papers as highly flexible electrodes with large areal capacitance and superior rate capability. Journal of Materials Chemistry A, 2017, 5, 19934-19942.	5.2	82
50	One-step synthesis of surface-enriched nickel cobalt sulfide nanoparticles on graphene for high-performance supercapacitors. Energy Storage Materials, 2017, 6, 180-187.	9.5	89
51	Breathable and Wearable Energy Storage Based on Highly Flexible Paper Electrodes. Advanced Materials, 2016, 28, 9313-9319.	11.1	219
52	Simultaneous Production of Highâ€Performance Flexible Textile Electrodes and Fiber Electrodes for Wearable Energy Storage. Advanced Materials, 2016, 28, 1675-1681.	11.1	186
53	High-performance supercapacitors based on graphene/MnO ₂ /activated carbon fiber felt composite electrodes in different neutral electrolytes. RSC Advances, 2016, 6, 12525-12529.	1.7	22
54	Flexible electrodes and supercapacitors for wearable energy storage: a review by category. Journal of Materials Chemistry A, 2016, 4, 4659-4685.	5.2	493

LIUBING DONG

#	ARTICLE	IF	CITATIONS
55	Freezeâ€drying method prepared <scp>UHMWPE/CNT</scp> s composites with optimized micromorphologies and improved tribological performance. Journal of Applied Polymer Science, 2015, 132, .	1.3	7
56	High-performance compressible supercapacitors based on functionally synergic multiscale carbon composite textiles. Journal of Materials Chemistry A, 2015, 3, 4729-4737.	5.2	81
57	Facile preparation of carbon nanotube aerogels with controlled hierarchical microstructures and versatile performance. Carbon, 2015, 90, 164-171.	5.4	51
58	Preparation of carbon nanotubes/epoxy composites using novel aerogel substrates. Materials Letters, 2015, 160, 432-435.	1.3	9
59	Combination effect of physical drying with chemical characteristic of carbon nanotubes on through-thickness properties of carbon fiber/epoxy composites. Journal of Materials Science, 2014, 49, 4979-4988.	1.7	12
60	Preparation of continuous carbon nanotube networks in carbon fiber/epoxy composite. Composites Part A: Applied Science and Manufacturing, 2014, 56, 248-255.	3.8	73
61	Spatial dispersion state of carbon nanotubes in a freeze-drying method prepared carbon fiber based preform and its effect on electrical conductivity of carbon fiber/epoxy composite. Materials Letters, 2014, 130, 292-295.	1.3	11
62	Effect of frozen conditions on dispersion morphologies of carbon nanotubes and electrical conductivity of carbon fiber/epoxy composites. Materials Letters, 2014, 130, 180-183.	1.3	17
63	Comparison of drying methods for the preparation of carbon fiber felt/carbon nanotubes modified epoxy composites. Composites Part A: Applied Science and Manufacturing, 2013, 55, 74-82.	3.8	12