
Yuheng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3250875/publications.pdf Version: 2024-02-01

YUHENC WANC

#	Article	IF	CITATIONS
1	Rhizobacteria helps to explain the enhanced efficiency of phytoextraction strengthened by Streptomyces pactum. Journal of Environmental Sciences, 2023, 125, 73-81.	6.1	6
2	Accumulation, regional distribution, and environmental effects of Sb in the largest Hg–Sb mine area in Qinling Orogen, China. Science of the Total Environment, 2022, 804, 150218.	8.0	16
3	Insights on uranium removal by ion exchange columns: The deactivation mechanisms, and an overlooked biological pathway. Chemical Engineering Journal, 2022, 434, 134708.	12.7	43
4	Efficient removal of heavily oil-contaminated soil using a combination of fenton pre-oxidation with biostimulated iron and bioremediation. Journal of Environmental Management, 2022, 308, 114590.	7.8	8
5	Translocation of Foliar Absorbed Zn in Sunflower (Helianthus annuus) Leaves. Frontiers in Plant Science, 2022, 13, 757048.	3.6	2
6	Electrochemical removal and recovery of uranium: Effects of operation conditions, mechanisms, and implications. Journal of Hazardous Materials, 2022, 432, 128723.	12.4	24
7	Simultaneous removal of tetrachloroethylene and nitrate with a novel sulfur-packed biocathode system: The synergy between bioelectrocatalytic dechlorination and sulfur autotrophic denitrification. Chemical Engineering Journal, 2022, 439, 135793.	12.7	18
8	Impact of ZnSO4 and ZnEDTA applications on wheat Zn biofortification, soil Zn fractions and bacterial community: Significance for public health and agroecological environment. Applied Soil Ecology, 2022, 176, 104484.	4.3	6
9	Coupled sulfur and electrode-driven autotrophic denitrification for significantly enhanced nitrate removal. Water Research, 2022, 220, 118675.	11.3	35
10	Weak electro-stimulation promotes microbial uranium removal: Efficacy and mechanisms. Journal of Hazardous Materials, 2022, 439, 129622.	12.4	18
11	Organic carbon mineralization and sequestration as affected by Zn availability in a calcareous loamy clay soil amended with wheat straw: a short-term case study. Archives of Agronomy and Soil Science, 2021, 67, 93-108.	2.6	4
12	Heavy metals in indoor dust: Spatial distribution, influencing factors, and potential health risks. Science of the Total Environment, 2021, 755, 142367.	8.0	56
13	Synergistic improvement of soil organic carbon storage and wheat grain zinc bioavailability by straw return in combination with Zn application on the Loess Plateau of China. Catena, 2021, 197, 104920.	5.0	16
14	Non-glandular trichomes of sunflower are important in the absorption and translocation of foliar-applied Zn. Journal of Experimental Botany, 2021, 72, 5079-5092.	4.8	15
15	Efficient cyclic oxidation of macro long-chain alkanes in soil using Fenton oxidation with recyclable Fe. Journal of Hazardous Materials, 2021, 417, 126026.	12.4	8
16	Reductive soil disinfestation attenuates antibiotic resistance genes in greenhouse vegetable soils. Journal of Hazardous Materials, 2021, 420, 126632.	12.4	9
17	Efficient and durable uranium extraction from uranium mine tailings seepage water via a photoelectrochemical method. IScience, 2021, 24, 103230.	4.1	16
18	Effect of Aging on the Stability of Microbially Reduced Uranium in Natural Sediment. Environmental Science & Technology, 2020, 54, 613-620.	10.0	19

YUHENG WANG

#	Article	IF	CITATIONS
19	Applications of anodized TiO2 nanotube arrays on the removal of aqueous contaminants of emerging concern: A review. Water Research, 2020, 186, 116327.	11.3	84
20	Microbially Mediated Release of As from Mekong Delta Peat Sediments. Environmental Science & Technology, 2019, 53, 10208-10217.	10.0	12
21	Arsenic Speciation in Mekong Delta Sediments Depends on Their Depositional Environment. Environmental Science & Technology, 2018, 52, 3431-3439.	10.0	50
22	Diffusion- and pH-Dependent Reactivity of Layer-Type MnO ₂ : Reactions at Particle Edges versus Vacancy Sites. Environmental Science & Technology, 2018, 52, 3476-3485.	10.0	40
23	(Fe3+)-UVC-(aliphatic/phenolic carboxyl acids) systems for diethyl phthalate ester degradation: A density functional theory (DFT) and experimental study. Applied Catalysis A: General, 2018, 567, 20-27.	4.3	5
24	Products of in Situ Corrosion of Depleted Uranium Ammunition in Bosnia and Herzegovina Soils. Environmental Science & Technology, 2016, 50, 12266-12274.	10.0	25
25	Uranium isotopes fingerprint biotic reduction. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5619-5624.	7.1	133
26	Arsenic(III) and Arsenic(V) Speciation during Transformation of Lepidocrocite to Magnetite. Environmental Science & Technology, 2014, 48, 14282-14290.	10.0	66
27	Geochemical Control on Uranium(IV) Mobility in a Mining-Impacted Wetland. Environmental Science & Technology, 2014, 48, 10062-10070.	10.0	41
28	Mobile uranium(IV)-bearing colloids in a mining-impacted wetland. Nature Communications, 2013, 4, 2942.	12.8	151
29	Structure and reactivity of As(III)- and As(V)-rich schwertmannites and amorphous ferric arsenate sulfate from the CarnoulÃ"s acid mine drainage, France: Comparison with biotic and abiotic model compounds and implications for As remediation. Geochimica Et Cosmochimica Acta, 2013, 104, 310-329.	3.9	86
30	Nanocrystalline Brookite with Enhanced Stability and Photocatalytic Activity: Influence of Lanthanum(III) Doping. ACS Applied Materials & Interfaces, 2012, 4, 752-760.	8.0	26
31	Distinctive Arsenic(V) Trapping Modes by Magnetite Nanoparticles Induced by Different Sorption Processes. Environmental Science & amp; Technology, 2011, 45, 7258-7266.	10.0	94
32	Reactivity at (nano)particle-water interfaces, redox processes, and arsenic transport in the environment. Comptes Rendus - Geoscience, 2011, 343, 123-139.	1.2	58
33	New insight into the structure of nanocrystalline ferrihydrite: EXAFS evidence for tetrahedrally coordinated iron(III). Geochimica Et Cosmochimica Acta, 2011, 75, 2708-2720.	3.9	139
34	XANES Evidence for Rapid Arsenic(III) Oxidation at Magnetite and Ferrihydrite Surfaces by Dissolved O ₂ via Fe ²⁺ -Mediated Reactions. Environmental Science & Technology, 2010, 44, 5416-5422.	10.0	165
35	Evidence for Different Surface Speciation of Arsenite and Arsenate on Green Rust: An EXAFS and XANES Study. Environmental Science & Technology, 2010, 44, 109-115.	10.0	98
36	EXAFS and HRTEM Evidence for As(III)-Containing Surface Precipitates on Nanocrystalline Magnetite: Implications for As Sequestration. Langmuir, 2009, 25, 9119-9128.	3.5	70

YUHENG WANG

#	Article	IF	CITATIONS
37	Arsenite sequestration at the surface of nano-Fe(OH)2, ferrous-carbonate hydroxide, and green-rust after bioreduction of arsenic-sorbed lepidocrocite by Shewanella putrefaciens. Geochimica Et Cosmochimica Acta, 2009, 73, 1359-1381.	3.9	88
38	Extended X-ray Absorption Fine Structure Analysis of Arsenite and Arsenate Adsorption on Maghemite. Environmental Science & Technology, 2008, 42, 2361-2366.	10.0	107
39	Arsenite sorption at the magnetite–water interface during aqueous precipitation of magnetite: EXAFS evidence for a new arsenite surface complex. Geochimica Et Cosmochimica Acta, 2008, 72, 2573-2586.	3.9	113
40	XAS Study of Arsenic Coordination in Euglena gracilis Exposed to Arsenite. Environmental Science & Technology, 2008, 42, 5342-5347.	10.0	33
41	Biogenic vs. abiogenic magnetite nanoparticles: A XMCD study. American Mineralogist, 2008, 93, 880-885.	1.9	63
42	Synchrotron X-ray studies of heavy metal mineral-microbe interactions. Mineralogical Magazine, 2008, 72, 169-173.	1.4	2
43	Detection and phylogenetic identification of labeled prokaryotic cells on mineral surfaces using Scanning X-ray Microscopy. Chemical Geology, 2007, 240, 182-192.	3.3	9