Hiroshi Takagi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3250737/publications.pdf

Version: 2024-02-01

227 papers 6,789 citations

57758 44 h-index 91884 69 g-index

232 all docs

232 docs citations

times ranked

232

5493 citing authors

#	Article	IF	CITATIONS
1	Microbial alkaline proteases. Biotechnology Advances, 1999, 17, 561-594.	11.7	651
2	Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications. Applied Microbiology and Biotechnology, 2008, 81, 211-223.	3.6	219
3	Ĵμ-Poly-L-lysine dispersity is controlled by a highly unusual nonribosomal peptide synthetase. Nature Chemical Biology, 2008, 4, 766-772.	8.0	143
4	Identification and Functional Analysis of Escherichia coli Cysteine Desulfhydrases. Applied and Environmental Microbiology, 2005, 71, 4149-4152.	3.1	134
5	Metabolic Engineering of <i>Saccharomyces cerevisiae</i> for Astaxanthin Production and Oxidative Stress Tolerance. Applied and Environmental Microbiology, 2009, 75, 7205-7211.	3.1	128
6	Effect of I-Proline on Sake Brewing and Ethanol Stress in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2005, 71, 8656-8662.	3.1	117
7	The l-Cysteine/l-Cystine Shuttle System Provides Reducing Equivalents to the Periplasm in Escherichia coli. Journal of Biological Chemistry, 2010, 285, 17479-17487.	3.4	101
8	Proline accumulation by mutation or disruption of the proline oxidase gene improves resistance to freezing and desiccation stresses in Saccharomyces cerevisiae. FEMS Microbiology Letters, 2000, 184, 103-108.	1.8	100
9	N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species. Applied Microbiology and Biotechnology, 2007, 75, 1343-1351.	3 . 6	100
10	Folding Pathway Mediated by an Intramolecular Chaperone. Journal of Biological Chemistry, 2001, 276, 44427-44434.	3.4	99
11	Role of the yeast acetyltransferase Mpr1 in oxidative stress: Regulation of oxygen reactive species caused by a toxic proline catabolism intermediate. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12616-12621.	7.1	90
12	Global Gene Expression Analysis of Yeast Cells during Sake Brewing. Applied and Environmental Microbiology, 2006, 72, 7353-7358.	3.1	88
13	Stressâ€tolerance of baker'sâ€yeast (<i>Saccharomyces cerevisiae</i>) cells: stressâ€protective molecules and genes involved in stress tolerance. Biotechnology and Applied Biochemistry, 2009, 53, 155-164.	3.1	87
14	l-Proline Accumulation and Freeze Tolerance in Saccharomyces cerevisiae Are Caused by a Mutation in the PRO1 Gene Encoding \hat{l}^3 -Glutamyl Kinase. Applied and Environmental Microbiology, 2003, 69, 212-219.	3.1	85
15	Gene expression profiles and intracellular contents of stress protectants in Saccharomyces cerevisiae under ethanol and sorbitol stresses. Applied Microbiology and Biotechnology, 2008, 79, 273-283.	3 . 6	80
16	Production of a Doubly Chiral Compound, (4 R ,6 R)-4-Hydroxy-2,2,6-Trimethylcyclohexanone, by Two-Step Enzymatic Asymmetric Reduction. Applied and Environmental Microbiology, 2003, 69, 933-937.	3.1	78
17	Overproduction of <scp>l</scp> -Cysteine and <scp>l</scp> -Cystine by <i>Escherichia coli</i> Strains with a Genetically Altered Serine Acetyltransferase. Applied and Environmental Microbiology, 1998, 64, 1607-1611.	3.1	74
18	Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production. Journal of Bioscience and Bioengineering, 2012, 113, 451-455.	2.2	73

#	Article	IF	CITATIONS
19	Effect of proline and arginine metabolism on freezing stress of Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 2002, 94, 390-394.	2.2	71
20	Desensitization of Feedback Inhibition of the Saccharomyces cerevisiae \hat{I}^3 -Glutamyl Kinase Enhances Proline Accumulation and Freezing Tolerance. Applied and Environmental Microbiology, 2007, 73, 4011-4019.	3.1	69
21	Gene Dosage Effect of I -Proline Biosynthetic Enzymes on I -Proline Accumulation and Freeze Tolerance in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2003, 69, 6527-6532.	3.1	68
22	The silk protein, sericin, protects against cell death caused by acute serum deprivation in insect cell culture. Biotechnology Letters, 2003, 25, 1805-1809.	2.2	67
23	Effect of Drug Transporter Genes on Cysteine Export and Overproduction in Escherichia coli. Applied and Environmental Microbiology, 2006, 72, 4735-4742.	3.1	64
24	Saccharomyces cerevisiae Σ1278b Has Novel Genes of the N -Acetyltransferase Gene Superfamily Required for I -Proline Analogue Resistance. Journal of Bacteriology, 2000, 182, 4249-4256.	2.2	63
25	An antioxidative mechanism mediated by the yeast N-acetyltransferase Mpr1: oxidative stress-induced arginine synthesis and its physiological role. FEMS Yeast Research, 2010, 10, 687-698.	2.3	63
26	Identification and classification of genes required for tolerance to freeze–thaw stress revealed by genome-wide screening ofSaccharomyces cerevisiaedeletion strains. FEMS Yeast Research, 2007, 7, 244-253.	2.3	62
27	Proline accumulation protects <i>Saccharomyces cerevisiae </i> cells in stationary phase from ethanol stress by reducing reactive oxygen species levels. Yeast, 2016, 33, 355-363.	1.7	62
28	Enhancement of thioredoxin/glutaredoxin-mediated L-cysteine synthesis from S-sulfocysteine increases L-cysteine production in Escherichia coli. Microbial Cell Factories, 2012, 11, 62.	4.0	61
29	Metabolic pathways and biotechnological production of l-cysteine. Applied Microbiology and Biotechnology, 2006, 73, 48-54.	3.6	60
30	The outer membrane TolC is involved in cysteine tolerance and overproduction in Escherichia coli. Applied Microbiology and Biotechnology, 2009, 81, 903-913.	3.6	59
31	Efficient screening for astaxanthin-overproducing mutants of the yeast <i>Xanthophyllomyces dendrorhous</i> by flow cytometry. FEMS Microbiology Letters, 2008, 286, 241-248.	1.8	56
32	Identification and classification of genes required for tolerance to high-sucrose stress revealed by genome-wide screening of Saccharomyces cerevisiae. FEMS Yeast Research, 2006, 6, 249-267.	2.3	55
33	A nonconserved Ala401 in the yeast Rsp5 ubiquitin ligase is involved in degradation of Gap1 permease and stress-induced abnormal proteins. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11505-11510.	7.1	54
34	É>-Poly-l-lysine producer, Streptomyces albulus, has feedback-inhibition resistant aspartokinase. Applied Microbiology and Biotechnology, 2007, 76, 873-882.	3.6	54
35	Simultaneous accumulation of proline and trehalose in industrial baker's yeast enhances fermentation ability in frozen dough. Journal of Bioscience and Bioengineering, 2012, 113, 592-595.	2.2	52
36	Control of Folding of Proteins Secreted by a High Expression Secretion Vector, pIN-III-ompA: 16-Fold Increase in Production of Active Subtilisin E in Escherichia Coli. Nature Biotechnology, 1988, 6, 948-950.	17.5	51

#	Article	IF	Citations
37	Uptake of L-cystine via an ABC transporter contributes defense of oxidative stress in the L-cystine export-dependent manner in Escherichia coli. PLoS ONE, 2015, 10, e0120619.	2.5	51
38	Purification, characterization and identification of cysteine desulfhydrase of Corynebacterium glutamicum, and its relationship to cysteine production. FEMS Microbiology Letters, 2002, 217, 103-107.	1.8	50
39	Ethanol stress stimulates the Ca2+-mediated calcineurin/Crz1 pathway in Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 2009, 107, 1-6.	2.2	50
40	Self-Cloning Baker's Yeasts That Accumulate Proline Enhance Freeze Tolerance in Doughs. Applied and Environmental Microbiology, 2008, 74, 5845-5849.	3.1	49
41	Characterization ofend4+, a gene required for endocytosis inSchizosaccharomyces pombe. Yeast, 2004, 21, 867-881.	1.7	48
42	A Novel Acetyltransferase Found in Saccharomyces cerevisiae \hat{l} £1278b That Detoxifies a Proline Analogue, Azetidine-2-carboxylic Acid. Journal of Biological Chemistry, 2001, 276, 41998-42002.	3.4	47
43	Proline accumulation in baker's yeast enhances high-sucrose stress tolerance and fermentation ability in sweet dough. International Journal of Food Microbiology, 2012, 152, 40-43.	4.7	47
44	Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker's yeast. Microbial Cell Factories, 2012, 11, 40.	4.0	46
45	Folding Pathway Mediated by an Intramolecular Chaperone: Dissecting Conformational Changes Coincident with Autoprocessing and the Role of Ca2+ in Subtilisin Maturation. Journal of Biochemistry, 2002, 131, 31-37.	1.7	45
46	N-Acetyltransferase Mpr1 Confers Freeze Tolerance on Saccharomyces cerevisiae by Reducing Reactive Oxygen Species. Journal of Biochemistry, 2005, 138, 391-397.	1.7	45
47	Mitochondrial metabolism and stress response of yeast: Applications in fermentation technologies. Journal of Bioscience and Bioengineering, 2014, 117, 383-393.	2.2	44
48	l-Cysteine Metabolism and Fermentation in Microorganisms. Advances in Biochemical Engineering/Biotechnology, 2016, 159, 129-151.	1.1	44
49	Properties, metabolisms, and applications of l-proline analogues. Applied Microbiology and Biotechnology, 2013, 97, 6623-6634.	3.6	43
50	Metabolic regulatory mechanisms and physiological roles of functional amino acids and their applications in yeast. Bioscience, Biotechnology and Biochemistry, 2019, 83, 1449-1462.	1.3	43
51	An Extremely Oligotrophic Bacterium, <i>Rhodococcus erythropolis</i> N9T-4, Isolated from Crude Oil. Journal of Bacteriology, 2007, 189, 6824-6831.	2.2	42
52	The flavoprotein Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells. Biochemical and Biophysical Research Communications, 2013, 430, 137-143.	2.1	42
53	Nitric Oxide-Mediated Antioxidative Mechanism in Yeast through the Activation of the Transcription Factor Mac1. PLoS ONE, 2014, 9, e113788.	2.5	41
54	Effects of an alkaline elastase from an alkalophilic Bacillus strain on the tenderization of beef meat. Journal of Agricultural and Food Chemistry, 1992, 40, 2364-2368.	5.2	40

#	Article	IF	Citations
55	Partial purification of phytase from a soil isolate bacterium, Klebsiella oxytoca MO-3. Journal of Bioscience and Bioengineering, 1997, 83, 393-394.	0.9	40
56	Possible roles of vacuolar H ⁺ â€ATPase and mitochondrial function in tolerance to airâ€drying stress revealed by genomeâ€wide screening of <i>Saccharomyces cerevisiae</i> deletion strains. Yeast, 2008, 25, 179-190.	1.7	40
57	The proline metabolism intermediate î" ¹ â€pyrrolineâ€5â€carboxylate directly inhibits the mitochondrial respiration in budding yeast. FEBS Letters, 2012, 586, 2411-2416.	2.8	39
58	An organic acid-tolerant HAA1-overexpression mutant of an industrial bioethanol strain of Saccharomyces cerevisiae and its application to the production of bioethanol from sugarcane molasses. AMB Express, 2013, 3, 74.	3.0	39
59	Enhancement of Stress Tolerance inSaccharomyces cerevisiaeby Overexpression of Ubiquitin Ligase Rsp5 and Ubiquitin-Conjugating Enzymes. Bioscience, Biotechnology and Biochemistry, 2006, 70, 2762-2765.	1.3	38
60	Effect of gene disruption of succinate dehydrogenase on succinate production in a sake yeast strain. Journal of Bioscience and Bioengineering, 2000, 90, 619-624.	2.2	36
61	Construction and analysis of self-cloning sake yeasts that accumulate proline. Journal of Bioscience and Bioengineering, 2007, 103, 377-380.	2.2	36
62	Vacuolar Functions are involved in stress-protective effect of intracellular proline in Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 2005, 100, 538-544.	2.2	35
63	Effects of ice-seeding temperature and intracellular trehalose contents on survival of frozen Saccharomyces cerevisiae cells. Cryobiology, 2009, 58, 170-174.	0.7	35
64	Enhancement of l-cysteine production by disruption of yciW in Escherichia coli. Journal of Bioscience and Bioengineering, 2015, 119, 176-179.	2.2	35
65	Effect of Gene Disruption of Succinate Dehydrogenase on Succinate Production in a Sake Yeast Strain Journal of Bioscience and Bioengineering, 2000, 90, 619-624.	2.2	35
66	PCR random mutagenesis intoEscherichia coliserine acetyltransferase: isolation of the mutant enzymes that cause overproduction ofL-cysteine andL-cystine due to the desensitization to feedback inhibition. FEBS Letters, 1999, 452, 323-327.	2.8	33
67	Rsp5 is required for the nuclear export of mRNA of <i>HSF1</i> and <i>MSN2/4</i> under stress conditions in <i>Saccharomyces cerevisiae</i> Genes To Cells, 2008, 13, 105-116.	1.2	33
68	Nitric oxide signaling in yeast. Applied Microbiology and Biotechnology, 2016, 100, 9483-9497.	3.6	31
69	Development of gene delivery systems for the É>-poly-L-lysine producer, Streptomyces albulus. Journal of Bioscience and Bioengineering, 2005, 99, 636-641.	2.2	29
70	Sake yeast strains have difficulty in entering a quiescent state after cell growth cessation. Journal of Bioscience and Bioengineering, 2011, 112, 44-48.	2.2	29
71	Threonine production by co-existence of cloned genes coding homoserine dehydrogenase and homoserine kinase in Brevibacterium lactofermentum Agricultural and Biological Chemistry, 1987, 51, 93-100.	0.3	28
72	A Novel Enzyme Conferring Streptothricin Resistance Alters the Toxicity of Streptothricin D from Broad-spectrum to Bacteria-specific. Journal of Biological Chemistry, 2006, 281, 16842-16848.	3.4	28

#	Article	IF	CITATIONS
73	Involvement of the yciW gene in l-cysteine and l-methionine metabolism in Escherichia coli. Journal of Bioscience and Bioengineering, 2015, 119, 310-313.	2.2	28
74	Inhibitory Role of Greatwall-Like Protein Kinase Rim15p in Alcoholic Fermentation via Upregulating the UDP-Glucose Synthesis Pathway in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2016, 82, 340-351.	3.1	28
75	Overproduction of L-cysteine and L-cystine by expression of genes for feedback inhibition-insensitive serine acetyltransferase fromArabidopsis thalianainEscherichia coli. FEMS Microbiology Letters, 1999, 179, 453-459.	1.8	27
76	Characterization of Novel Acetyltransferases Found in Budding and Fission Yeasts That Detoxify a Proline Analogue, Azetidine-2-Carboxylic Acid. Journal of Biochemistry, 2003, 133, 67-74.	1.7	27
77	Functional genomic analysis of commercial baker's yeast during initial stages of model dough-fermentation. Food Microbiology, 2006, 23, 717-728.	4.2	27
78	Antioxidant N-acetyltransferase Mpr1/2 of industrial baker's yeast enhances fermentation ability after air-drying stress in bread dough. International Journal of Food Microbiology, 2010, 138, 181-185.	4.7	27
79	Isolation of baker's yeast mutants with proline accumulation that showed enhanced tolerance to baking-associated stresses. International Journal of Food Microbiology, 2016, 238, 233-240.	4.7	27
80	Nitric oxide signaling and its role in oxidative stress response in Schizosaccharomyces pombe. Nitric Oxide - Biology and Chemistry, 2016, 52, 29-40.	2.7	27
81	Role of i>Saccharomyces cerevisiae / i>serine i>O / i>-acetyltransferase in cysteine biosynthesis. FEMS Microbiology Letters, 2003, 218, 291-297.	1.8	26
82	High-level production of valine by expression of the feedback inhibition-insensitive acetohydroxyacid synthase in Saccharomyces cerevisiae. Metabolic Engineering, 2018, 46, 60-67.	7.0	26
83	Improved L-threonine production by the amplification of the gene encoding homoserine dehydrogenase in Brevibacterium lactofermentum Agricultural and Biological Chemistry, 1987, 51, 87-91.	0.3	25
84	Polymorphism of the MPR1 gene required for toxic proline analogue resistance in the Saccharomyces cerevisiae complex species. Yeast, 2002, 19, 1437-1445.	1.7	25
85	Crystal structure of a YeeE/YedE family protein engaged in thiosulfate uptake. Science Advances, 2020, 6, eaba7637.	10.3	25
86	A Sericin-Derived Peptide Protects Sf9 Insect Cells from Death Caused by Acute Serum Deprivation. Biotechnology Letters, 2005, 27, 893-897.	2.2	24
87	Engineering of the yeast antioxidant enzyme Mpr1 for enhanced activity and stability. Biotechnology and Bioengineering, 2009, 103, 341-352.	3.3	24
88	Overexpression of the Transcription Activator Msn2 Enhances the Fermentation Ability of Industrial Baker's Yeast in Frozen Dough. Bioscience, Biotechnology and Biochemistry, 2012, 76, 624-627.	1.3	23
89	Improvement of fermentation ability under baking-associated stress conditions by altering the POG1 gene expression in baker's yeast. International Journal of Food Microbiology, 2013, 165, 241-245.	4.7	23
90	Utilization of atmospheric ammonia by an extremely oligotrophic bacterium, Rhodococcus erythropolis N9T-4. Journal of Bioscience and Bioengineering, 2014, 117, 28-32.	2.2	23

#	Article	IF	Citations
91	Regulatory mechanism of the flavoprotein Tah18-dependent nitric oxide synthesis and cell death in yeast. Nitric Oxide - Biology and Chemistry, 2016, 57, 85-91.	2.7	23
92	Metabolic switching of sake yeast by kimoto lactic acid bacteria through theÂ[GAR] non-genetic element. Journal of Bioscience and Bioengineering, 2018, 126, 624-629.	2.2	23
93	Molecular mechanisms and highly functional development for stress tolerance of the yeast <i>Saccharomyces cerevisiae</i> . Bioscience, Biotechnology and Biochemistry, 2021, 85, 1017-1037.	1.3	23
94	Functional analysis of l-serineO-acetyltransferase fromCorynebacterium glutamicum. FEMS Microbiology Letters, 2006, 255, 156-163.	1.8	22
95	Structural and functional analysis of the yeast $\langle i \rangle N \langle i \rangle$ -acetyltransferase Mpr1 involved in oxidative stress tolerance via proline metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11821-11826.	7.1	22
96	4-Phenylbutyrate suppresses the unfolded protein response without restoring protein folding in Saccharomyces cerevisiae. FEMS Yeast Research, 2018, 18, .	2.3	22
97	The Effect of Amino Acid Deletion in Subtilisin E, Based on Structural Comparison with a Microbial Alkaline Elastase, on Its Substrate Specificity and Catalysis. Journal of Biochemistry, 1992, 111, 584-588.	1.7	21
98	Overexpression and purification of microbial pro-transglutaminase from Streptomyces cinnamoneum and in vitro processing by Streptomyces albogriseolus proteases. Journal of Bioscience and Bioengineering, 2002, 94, 478-481.	2.2	21
99	Serine racemase homologue of Saccharomyces cerevisiae has l-threo-3-hydroxyaspartate dehydratase activity. FEMS Microbiology Letters, 2003, 225, 189-193.	1.8	21
100	The Crystal Structure and Stereospecificity of Levodione Reductase from Corynebacterium aquaticum M-13. Journal of Biological Chemistry, 2003, 278, 19387-19395.	3.4	21
101	Gene Expression Analysis of Methylotrophic Oxidoreductases Involved in the Oligotrophic Growth of <i>Rhodococcus erythropolis </i> N9T-4. Bioscience, Biotechnology and Biochemistry, 2011, 75, 123-127.	1.3	21
102	Phosphorylation of a conserved <scp>T</scp> hr357 in yeast <scp>N</scp> edd4â€like ubiquitin ligase <scp>R</scp> sp5 is involved in downâ€regulation of the general amino acid permease <scp>G</scp> ap1. Genes To Cells, 2013, 18, 459-475.	1.2	21
103	The glyoxylate shunt is essential for CO2-requiring oligotrophic growth of Rhodococcus erythropolis N9T-4. Applied Microbiology and Biotechnology, 2015, 99, 5627-5637.	3.6	21
104	Cloning, Sequence Analysis, and Expression in Escherichia coli of the Gene Encoding Monovalent Cation-activated Levodione Reductase from Corynebacterium aquaticum M-13. Bioscience, Biotechnology and Biochemistry, 2001, 65, 830-836.	1.3	20
105	Cloning and Overexpression of the Exiguobacterium sp. F42 Gene Encoding a New Short Chain Dehydrogenase, Which Catalyzes the Stereoselective Reduction of Ethyl 3-Oxo-3-(2-thienyl) propanoate to Ethyl (S)-3-Hydroxy-3-(2-thienyl) propanoate. Bioscience, Biotechnology and Biochemistry, 2004, 68, 1481-1488.	1.3	20
106	Rsp5 regulates expression of stress proteins via post-translational modification of Hsf1 and Msn4 inSaccharomyces cerevisiae. FEBS Letters, 2006, 580, 3433-3438.	2.8	20
107	Screening of Carbon Dioxide-Requiring Extreme Oligotrophs from Soil. Bioscience, Biotechnology and Biochemistry, 2007, 71, 2830-2832.	1.3	20
108	Functional genomics of commercial baker's yeasts that have different abilities for sugar utilization and highâ€sucrose tolerance under different sugar conditions. Yeast, 2007, 24, 901-911.	1.7	19

#	Article	IF	Citations
109	Distribution of L-Azetidine-2-carboxylate N-Acetyltransferase in Yeast. Bioscience, Biotechnology and Biochemistry, 2008, 72, 582-586.	1.3	19
110	Disruption of ubiquitin-related genes in laboratory yeast strains enhances ethanol production during sake brewing. Journal of Bioscience and Bioengineering, 2009, 107, 636-640.	2.2	19
111	Finding of thiosulfate pathway for synthesis of organic sulfur compounds in Saccharomyces cerevisiae and improvement of ethanol production. Journal of Bioscience and Bioengineering, 2015, 120, 666-669.	2.2	19
112	Changes in Gene Expression of Commercial Baker's Yeast during an Air-Drying Process that Simulates Dried Yeast Production. Journal of Bioscience and Bioengineering, 2008, 106, 405-408.	2.2	18
113	Proline as a Stress Protectant in the Yeast <i>Saccharomyces cerevisiae</i> : Effects of Trehalose and <i>PRO1</i> Gene Expression on Stress Tolerance. Bioscience, Biotechnology and Biochemistry, 2009, 73, 2131-2135.	1.3	18
114	Exogenous addition of histidine reduces copper availability in the yeast Saccharomyces cerevisiae. Microbial Cell, 2014, 1, 241-246.	3.2	18
115	Valine biosynthesis in Saccharomyces cerevisiae is regulated by the mitochondrial branched-chain amino acid aminotransferase Bat1. Microbial Cell, 2018, 5, 293-299.	3.2	18
116	Proline metabolism regulates replicative lifespan in the yeast Saccharomyces cerevisiae. Microbial Cell, 2019, 6, 482-490.	3.2	18
117	Insufficiency of Copper Ion Homeostasis Causes Freeze-Thaw Injury of Yeast Cells as Revealed by Indirect Gene Expression Analysis. Applied and Environmental Microbiology, 2009, 75, 6706-6711.	3.1	17
118	Vacuolar amino acid transporters upregulated by exogenous proline and involved in cellular localization of proline in <i>Saccharomyces cerevisiae</i> . Journal of General and Applied Microbiology, 2016, 62, 132-139.	0.7	17
119	Promoter engineering of the Saccharomyces cerevisiae RIM15 gene for improvement of alcoholic fermentation rates under stress conditions. Journal of Bioscience and Bioengineering, 2017, 123, 183-189.	2.2	17
120	Rim15p-mediated regulation of sucrose utilization during molasses fermentation using Saccharomyces cerevisiae strain PE-2. Journal of Bioscience and Bioengineering, 2013, 116, 591-594.	2.2	16
121	Mitochondrial cysteinyl-tRNA synthetase is expressed via alternative transcriptional initiation regulated by energy metabolism in yeast cells. Journal of Biological Chemistry, 2019, 294, 13781-13788.	3.4	16
122	Nutrient Signaling via the TORC1-Greatwall-PP2A $\sup B55\hat{l}' \le \sup Pathway $ Is Responsible for the High Initial Rates of Alcoholic Fermentation in Sake Yeast Strains of Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2019, 85, .	3.1	16
123	The yeast α-arrestin Art3 is a key regulator for arginine-induced endocytosis of the high-affinity proline transporter Put4. Biochemical and Biophysical Research Communications, 2020, 531, 416-421.	2.1	16
124	Inhibitory effect of arginine on proline utilization in <scp><i>Saccharomyces cerevisiae</i></scp> . Yeast, 2020, 37, 531-540.	1.7	16
125	Quality Control of Plasma Membrane Proteins by Saccharomyces cerevisiae Nedd4-Like Ubiquitin Ligase Rsp5p under Environmental Stress Conditions. Eukaryotic Cell, 2014, 13, 1191-1199.	3.4	15
126	Isolation and functional analysis of yeast ubiquitin ligase Rsp5 variants that alleviate the toxicity of human \hat{l}_{\pm} -synuclein. Journal of Biochemistry, 2015, 157, 251-260.	1.7	15

#	Article	IF	CITATIONS
127	Characterization of a New Saccharomyces cerevisiae Isolated From Hibiscus Flower and Its Mutant With L-Leucine Accumulation for Awamori Brewing. Frontiers in Genetics, 2019, 10, 490.	2.3	15
128	Detection system of the intracellular nitric oxide in yeast by HPLC with a fluorescence detector. Analytical Biochemistry, 2020, 598, 113707.	2.4	15
129	The yeast ubiquitin ligase Rsp5 downregulates the alpha subunit of nascent polypeptideâ€essociated complex Egd2 under stress conditions. FEBS Journal, 2009, 276, 5287-5297.	4.7	14
130	Isolation and characterization of awamori yeast mutants with I-leucine accumulation that overproduce isoamyl alcohol. Journal of Bioscience and Bioengineering, 2015, 119, 140-147.	2.2	14
131	Proline Homeostasis in Saccharomyces cerevisiae: How Does the Stress-Responsive Transcription Factor Msn2 Play a Role?. Frontiers in Genetics, 2020, 11 , 438.	2.3	14
132	Longevity Regulation by Proline Oxidation in Yeast. Microorganisms, 2021, 9, 1650.	3.6	14
133	Isolation and sequence analysis of plasmid pNO33 in the $\hat{l}\mu$ -poly-l-lysine-producing actinomycete Streptomyces albulus IFO14147. Journal of Bioscience and Bioengineering, 2000, 89, 94-96.	2.2	13
134	EOS1, whose deletion confers sensitivity to oxidative stress, is involved in N-glycosylation in Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 2007, 353, 293-298.	2.1	13
135	Overexpression of two transcriptional factors, Kin28 and Pog1, suppresses the stress sensitivity caused by the <i>rsp5 </i> mutation in <i>Saccharomyces cerevisiae </i> FEMS Microbiology Letters, 2007, 277, 70-78.	1.8	13
136	Production of N-acetyl cis-4-hydroxy-l-proline by the yeast N-acetyltransferase Mpr1. Journal of Bioscience and Bioengineering, 2012, 114, 160-165.	2.2	13
137	Nomenclatural issues concerning cultured yeasts and other fungi: why it is important to avoid unneeded name changes. IMA Fungus, 2021, 12, 18.	3.8	13
138	Accumulation of intracellular S-adenosylmethionine increases the fermentation rate of bottom-fermenting brewer's yeast during high-gravity brewing. Journal of Bioscience and Bioengineering, 2018, 126, 736-741.	2.2	13
139	Overexpression of vacuolar H+-ATPase-related genes in bottom-fermenting yeast enhances ethanol tolerance and fermentation rates during high-gravity fermentation. Journal of the Institute of Brewing, 2012, 118, 179-185.	2.3	12
140	Microbial production of N-acetyl cis-4-hydroxy-l-proline by coexpression of the Rhizobium l-proline cis-4-hydroxylase and the yeast N-acetyltransferase Mpr1. Applied Microbiology and Biotechnology, 2013, 97, 247-257.	3.6	12
141	A unique intracellular compartment formed during the oligotrophic growth of Rhodococcus erythropolis N9T-4. Applied Microbiology and Biotechnology, 2017, 101, 331-340.	3.6	12
142	Nitric Oxide Signalling in Yeast. Advances in Microbial Physiology, 2018, 72, 29-63.	2.4	12
143	The Production of Recombinant APRP, an Alkaline Protease Derived from Bacillus pumilus TYO-67, by In Vitro Refolding of Pro-enzyme Fixed on a Solid Surface. Journal of Biochemistry, 2004, 136, 549-556.	1.7	11
144	<i>MPR1</i> as a novel selection marker in <i>Saccharomyces cerevisiae</i> . Yeast, 2009, 26, 587-593.	1.7	11

#	Article	IF	Citations
145	Engineering of the yeast ubiquitin ligase Rsp5: isolation of a new variant that induces constitutive inactivation of the general amino acid permease Gap1. FEMS Yeast Research, 2009, 9, 73-86.	2.3	11
146	Functional Analysis of the C-Terminal Region of \hat{I}^3 -Glutamyl Kinase of \hat{I}^3 -Saccharomyces cerevisiae \hat{I}^3 -Bioscience, Biotechnology and Biochemistry, 2012, 76, 454-461.	1.3	11
147	Pleiotropic functions of the yeast Greatwall-family protein kinase Rim15p: a novel target for the control of alcoholic fermentation. Bioscience, Biotechnology and Biochemistry, 2017, 81, 1061-1068.	1.3	11
148	Involvement of the stress-responsive transcription factor gene MSN2 in the control of amino acid uptake in Saccharomyces cerevisiae. FEMS Yeast Research, 2019, 19, .	2.3	11
149	A Novel Mechanism for Nitrosative Stress Tolerance Dependent on GTP Cyclohydrolase II Activity Involved in Riboflavin Synthesis of Yeast. Scientific Reports, 2020, 10, 6015.	3.3	11
150	Versatile cloning vectors constructed with genes indigenous to a glutamic acid-producer, Brevibacterium lactofermentum Agricultural and Biological Chemistry, 1986, 50, 2597-2603.	0.3	10
151	Overexpression and Characterization of an Aminoglycoside 6'-N-Acetyltransferase with Broad Specificity from an Â-Poly-L-lysine Producer, Streptomyces albulus IFO14147. Journal of Biochemistry, 2004, 136, 517-524.	1.7	10
152	A Functional Analysis of the Yeast Ubiquitin Ligase Rsp5: The Involvement of the Ubiquitin-Conjugating Enzyme Ubc4 and Poly-Ubiquitination in Ethanol-Induced Down-Regulation of Targeted Proteins. Bioscience, Biotechnology and Biochemistry, 2009, 73, 2268-2273.	1.3	10
153	Chemical screening identifies an extract from marine Pseudomonas spPTR-08 as an anti-aging agent that promotes fission yeast longevity by modulating the Pap1–ctt1+ pathway and the cell cycle. Molecular Biology Reports, 2020, 47, 33-43.	2.3	10
154	Putative mitochondrial \hat{l}_{\pm} -ketoglutarate-dependent dioxygenase Fmp12 controls utilization of proline as an energy source in Saccharomyces cerevisiae. Microbial Cell, 2016, 3, 522-528.	3.2	10
155	An overview of branched-chain amino acid aminotransferases: functional differences between mitochondrial and cytosolic isozymes in yeast and human. Applied Microbiology and Biotechnology, 2021, 105, 8059-8072.	3.6	10
156	Purification and Characterization of O-Acetylserine Sulfhydrylase of Corynebacterium glutamicum. Bioscience, Biotechnology and Biochemistry, 2004, 68, 1581-1583.	1.3	9
157	Cooperative and selective roles of the WW domains of the yeast Nedd4-like ubiquitin ligase Rsp5 in the recognition of the arrestin-like adaptors Bul1 and Bul2. Biochemical and Biophysical Research Communications, 2015, 463, 76-81.	2.1	9
158	γâ€Glutamyl kinase is involved in selective autophagy of ribosomes in <i>Saccharomyces cerevisiae</i> FEBS Letters, 2016, 590, 2906-2914.	2.8	9
159	Enhanced sodium acetate tolerance in Saccharomyces cerevisiae by the Thr255Ala mutation of the ubiquitin ligase Rsp5. FEMS Yeast Research, 2017, 17, .	2.3	9
160	A Novel Mitochondrial Serine O-Acetyltransferase, OpSAT1, Plays a Critical Role in Sulfur Metabolism in the Thermotolerant Methylotrophic Yeast Ogataea parapolymorpha. Scientific Reports, 2018, 8, 2377.	3.3	9
161	Sodium Acetate Responses in Saccharomyces cerevisiae and the Ubiquitin Ligase Rsp5. Frontiers in Microbiology, 2018, 9, 2495.	3.5	9
162	The unfolded protein response in <i>Pichia pastoris</i> without external stressing stimuli. FEMS Yeast Research, 2020, 20, .	2.3	9

#	Article	IF	Citations
163	Enhancement of lysine biosynthesis confers high-temperature stress tolerance to Escherichia coli cells. Applied Microbiology and Biotechnology, 2021, 105, 6899-6908.	3.6	9
164	Stress Tolerance of Baker's Yeast During Bread-Making Processes. , 2015, , 23-42.		9
165	Carbon monoxide utilization of an extremely oligotrophic bacterium, Rhodococcus erythropolis N9T-4. Journal of Bioscience and Bioengineering, 2012, 114, 53-55.	2.2	8
166	Calcineurin inhibitors suppress the high-temperature stress sensitivity of the yeast ubiquitin ligase Rsp5 mutant: a new method of screening for calcineurin inhibitors. FEMS Yeast Research, 2014, 14, 567-574.	2.3	8
167	Yeast prion-based metabolic reprogramming induced by bacteria in fermented foods. FEMS Yeast Research, 2019, 19, .	2.3	8
168	Categorization of endoplasmic reticulum stress as accumulation of unfolded proteins or membrane lipid aberrancy using yeast Ire1 mutants. Bioscience, Biotechnology and Biochemistry, 2019, 83, 326-329.	1.3	8
169	Natural extract and its fractions isolated from the marine bacterium Pseudoalteromonas flavipulchra STILL-33 have antioxidant and antiaging activities in Schizosaccharomyces pombe. FEMS Yeast Research, 2020, 20, .	2.3	8
170	High-Level Production of Lysine in the Yeast Saccharomyces cerevisiae by Rational Design of Homocitrate Synthase. Applied and Environmental Microbiology, 2021, 87, e0060021.	3.1	8
171	Yeast Cell Death Caused by Mutation of theOST2Gene Encoding the ε-Subunit ofSaccharomyces cerevisiaeOligosaccharyltransferase. Bioscience, Biotechnology and Biochemistry, 2006, 70, 1234-1241.	1.3	7
172	Heterogeneity in Pathogenicity-related Properties and Stress Tolerance in <i>Aspergillus fumigatus</i> Clinical Isolates. Medical Mycology Journal, 2018, 59, E63-E70.	1.4	7
173	Effect of the Ala234Asp replacement in mitochondrial branched-chain amino acid aminotransferase on the production of BCAAs and fusel alcohols in yeast. Applied Microbiology and Biotechnology, 2020, 104, 7915-7925.	3.6	7
174	Construction of Baker's Yeast Strains with Enhanced Tolerance to Baking-Associated Stresses. , 2017, , 63-85.		7
175	A Novel Metal-Activated L-Serine O-Acetyltransferase from Thermus thermophilus HB8. Journal of Biochemistry, 2004, 136, 629-634.	1.7	6
176	Multicopy suppression of oxidant-sensitive eos1 mutation by IZH2 \hat{a} f in Saccharomyces cerevisiae and the involvement of Eos1 in zinc homeostasis. FEMS Yeast Research, 2010, 10, 259-269.	2.3	6
177	Characterization of \hat{I}^3 -glutamyl kinase mutants from Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 2013, 116, 576-579.	2.2	6
178	Awa1p on the cell surface of sake yeast inhibits biofilm formation and the co-aggregation between sake yeasts and Lactobacillus plantarum ML11-11. Journal of Bioscience and Bioengineering, 2015, 119, 532-537.	2.2	6
179	High-level production of ornithine by expression of the feedback inhibition-insensitive N-acetyl glutamate kinase in the sake yeast Saccharomyces cerevisiae. Metabolic Engineering, 2020, 62, 1-9.	7.0	6
180	Effects of a novel variant of the yeast \hat{I}^3 -glutamyl kinase Pro1 on its enzymatic activity and sake brewing. Journal of Industrial Microbiology and Biotechnology, 2020, 47, 715-723.	3.0	6

#	Article	IF	CITATIONS
181	The Cdc25/Ras/cAMP-dependent protein kinase A signaling pathway regulates proline utilization in wine yeast <i>Saccharomyces cerevisiae</i> under a wine fermentation model. Bioscience, Biotechnology and Biochemistry, 2022, 86, 1318-1326.	1.3	6
182	Improved Production and Recovery of Alkaline Elastase from Alkalophilic <i>Bacillus</i> Strain by a Change of Medium Composition. Bioscience, Biotechnology and Biochemistry, 1995, 59, 1591-1592.	1.3	5
183	Cloning and heterologous expression of the ftfCNC-2(1) gene from Weissella confusa MBFCNC-2(1) as an extracellular active fructansucrase in Bacillus subtilis. Journal of Bioscience and Bioengineering, 2015, 119, 515-520.	2.2	5
184	Structure-based molecular design for thermostabilization of N-acetyltransferase Mpr1 involved in a novel pathway of l-arginine synthesis in yeast. Journal of Biochemistry, 2016, 159, 271-277.	1.7	5
185	Effect of the deubiquitination enzyme gene UBP6 on the stress-responsive transcription factor Msn2-mediated control of the amino acid permease Gnp1 in yeast. Journal of Bioscience and Bioengineering, 2020, 129, 423-427.	2.2	5
186	Downregulation of the broad-specificity amino acid permease Agp1 mediated by the ubiquitin ligase Rsp5 and the arrestin-like protein Bul1 in yeast. Bioscience, Biotechnology and Biochemistry, 2021, 85, 1266-1274.	1.3	5
187	Molecular mechanism of ethanol fermentation inhibition via protein tyrosine nitration of pyruvate decarboxylase by reactive nitrogen species in yeast. Scientific Reports, 2022, 12, 4664.	3.3	5
188	Identification of amino acid residues essential for the yeast N-acetyltransferase Mpr1 activity by site-directed mutagenesis. FEMS Yeast Research, 2008, 8, 607-614.	2.3	4
189	Importance of Proteasome Gene Expression during Model Dough Fermentation after Preservation of Baker's Yeast Cells by Freezing. Applied and Environmental Microbiology, 2018, 84, .	3.1	4
190	Stable <i>N</i> -acetyltransferase Mpr1 improves ethanol productivity in the sake yeast <i>Saccharomyces cerevisiae</i> . Journal of Industrial Microbiology and Biotechnology, 2019, 46, 1039-1045.	3.0	4
191	An NADPHâ€independent mechanism enhances oxidative and nitrosative stress tolerance in yeast cells lacking glucoseâ€6â€phosphate dehydrogenase activity. Yeast, 2021, 38, 414-423.	1.7	4
192	The analytical method to identify the nitrogen source for nitric oxide synthesis. Bioscience, Biotechnology and Biochemistry, 2021, 85, 211-214.	1.3	4
193	High-Level Production of Isoleucine and Fusel Alcohol by Expression of the Feedback Inhibition-Insensitive Threonine Deaminase in <i>Saccharomyces cerevisiae</i> Environmental Microbiology, 2022, 88, AEM0213021.	3.1	4
194	Functional Analysis of Genes Encoding Putative Oxidoreductases in Aspergillus oryzae, Which Are Similar to Fungal Fructosyl-Amino Acid Oxidase. Journal of Bioscience and Bioengineering, 2007, 104, 424-427.	2.2	3
195	Loss of Rim15p in shochu yeast alters carbon utilization during barley shochu fermentation. Bioscience, Biotechnology and Biochemistry, 2019, 83, 1594-1597.	1.3	3
196	A novel yeastâ€based screening system for potential compounds that can alleviate human αâ€synuclein toxicity. Journal of Applied Microbiology, 2021, , .	3.1	3
197	Arginine inhibits <i>Saccharomyces cerevisiae</i> biofilm formation by inducing endocytosis of the arginine transporter Can1. Bioscience, Biotechnology and Biochemistry, 0, , .	1.3	3
198	Cloning and Analysis of the Â-Lactamase Gene from Â-Poly-L-lysine-Producing Actinomycete Streptomyces albulus IFO14147. Journal of Biochemistry, 2003, 134, 473-478.	1.7	2

#	Article	IF	CITATIONS
199	Crystallization and preliminary crystallographic analysis of N-acetyltransferase Mpr1 from Saccharomyces cerevisiae. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 169-172.	0.7	2
200	The transcriptional activator Pog1 controls cell cycle, and its phosphorylated form is downregulated by the ubiquitin ligase Dma2 inSaccharomyces cerevisiae. FEMS Yeast Research, 2014, 14, n/a-n/a.	2.3	2
201	A chimeric mutant analysis in yeast cells suggests BiP independent regulation of the mammalian endoplasmic reticulum-stress sensor IRE1 $\hat{I}\pm$. Bioscience, Biotechnology and Biochemistry, 2018, 82, 1527-1530.	1.3	2
202	Editorial: yeast ecology and interaction. FEMS Yeast Research, 2019, 19, .	2.3	2
203	Inhibition of Calcineurin and Glycogen Synthase Kinaseâ€3β by Ricinoleic Acid Derived from Castor Oil. Lipids, 2020, 55, 89-99.	1.7	2
204	Aeration mitigates endoplasmic reticulum stress in Saccharomyces cerevisiae even without mitochondrial respiration. Microbial Cell, 2021, 8, 77-86.	3.2	2
205	NADPH is important for isobutanol tolerance in a minimal medium of <i>Saccharomyces cerevisiae</i> Bioscience, Biotechnology and Biochemistry, 2021, 85, 2084-2088.	1.3	2
206	Cysteine residues in the fourth zinc finger are important for activation of the nitric oxideâ€inducible transcription factor Fzf1 in the yeast Saccharomyces cerevisiae. Genes To Cells, 2021, 26, 823-829.	1.2	2
207	Mechanism of High Alcoholic Fermentation Ability of Sake Yeast. , 2015, , 59-75.		2
208	Studies on the Structure and Function of Subtilisin E by Protein Engineering. Annals of the New York Academy of Sciences, 1992, 672, 52-59.	3.8	2
209	The C2 domain of the ubiquitin ligase Rsp5 is required for ubiquitination of the endocytic protein Rvs167 upon change of nitrogen source. FEMS Yeast Research, 2020, 20, .	2.3	2
210	Isolation and analysis of a sake yeast mutant with phenylalanine accumulation. Journal of Industrial Microbiology and Biotechnology, 2021, , .	3.0	2
211	Studies on the Structure and Function of Subtilisin E by Protein Engineering. Annals of the New York Academy of Sciences, 1992, 672, 52-59.	3.8	1
212	Functional Improvement of Subtilisin E, a Protease of <i>Bacillus subtilis</i> , by Protein Engineering. Nippon Nogeikagaku Kaishi, 1997, 71, 995-1002.	0.0	1
213	l-Cysteine Metabolism Found in Saccharomyces cerevisiae and Ogataea parapolymorpha., 2019,, 521-537.		1
214	Characterization of collagenase found in the nonpathogenic bacterium Lysinibacillus sphaericus VN3. Bioscience, Biotechnology and Biochemistry, 2020, 84, 2293-2302.	1.3	1
215	Role of Gln79 in Feedback Inhibition of the Yeast Î ³ -Glutamyl Kinase by Proline. Microorganisms, 2021, 9, 1902.	3.6	1
216	Identification and Functional Analysis of GTP Cyclohydrolase II in Candida glabrata in Response to Nitrosative Stress. Frontiers in Microbiology, 2022, 13, 825121.	3.5	1

#	Article	IF	CITATIONS
217	Acetaldehyde reacts with a fluorescent nitric oxide probe harboring an o-phenylenediamine structure that interferes with fluorometry. Free Radical Biology and Medicine, 2022, 187, 29-37.	2.9	1
218	Improvement of Fusel Alcohol Production by Engineering of the Yeast Branched-Chain Amino Acid Aminotransaminase. Applied and Environmental Microbiology, 2022, 88, .	3.1	1
219	Conversion of the Cleavage Specificity of Subtilisin YaB on Oxidized Insulin Chains to an Elastase-like Specificity by Replacement of Gly124 with Ala. Bioscience, Biotechnology and Biochemistry, 2003, 67, 1601-1604.	1.3	O
220	ãf—ãfãfªãf³ã®ã,¹ãf^ãf¬ã,¹ä¿è-機èf½ãĕ代è¬èª¿ç⁻€æ©Ÿæ§‹ é…µæ¯ã,'甓ã₅,ã┥ãã®é…力ãĕ謎ã∗è¿«ã,‹. Kag	akuOT o Sei	bu ts u, 2008,
221	Title is missing!. Kagaku To Seibutsu, 2011, 49, 81-83.	0.0	0
222	Stress Tolerance of Baker's Yeast during Bread-Making Processes: Proline/Arginine Metabolism and Its Application to Breeding. Japanese Journal of Food Microbiology, 2014, 31, 185-193.	0.2	0
223	<i>RIM15</i> , a Kyokai Sake Yeast-specific Mutated Gene Associated with the High Alcoholic Fermentation Performance. Journal of the Brewing Society of Japan, 2016, 111, 638-647.	0.3	0
224	Regulatory Mechanism of Nitric Oxide Synthesis and Its Physiological Function in Yeast. Kagaku To Seibutsu, 2017, 55, 617-623.	0.0	0
225	Studies on the Structure and Function of Subtilisin E by Protein Engineering. Advances in Experimental Medicine and Biology, 1996, 379, 269-275.	1.6	0
226	Development of a microtiter plate-based analysis method of nitric oxide dioxygenase activity. Journal of General and Applied Microbiology, 2022, , .	0.7	0
227	Functional Analysis of Feedback Inhibition-Insensitive Variants of $\langle i \rangle N \langle j \rangle$ -Acetyl Glutamate Kinase Found in Sake Yeast Mutants with Ornithine Overproduction. Microbiology Spectrum, 2022, , e0082222.	3.0	0