Pengbo Lyu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3250578/publications.pdf

Version: 2024-02-01

488211 448610 1,596 31 19 31 citations g-index h-index papers 34 34 34 2958 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Interlayer-expanded MoS2 nanoflowers anchored on the graphene: A high-performance Li+/Mg2+ co-intercalation cathode material. Chemical Engineering Journal, 2022, 428, 131214.	6.6	23
2	Flexibilization of Biorefineries: Tuning Lignin Hydrogenation by Hydrogen Partial Pressure. ChemSusChem, 2021, 14, 373-378.	3.6	8
3	H2S Stability of Metal–Organic Frameworks: A Computational Assessment. ACS Applied Materials & Interfaces, 2021, 13, 4813-4822.	4.0	6
4	Ammonia Capture via an Unconventional Reversible Guest-Induced Metal-Linker Bond Dynamics in a Highly Stable Metal–Organic Framework. Chemistry of Materials, 2021, 33, 6186-6192.	3.2	26
5	Highly efficient CO2 reduction under visible-light on non-covalent RuâcRe assembled photocatalyst: Evidence on the electron transfer mechanism. Journal of Catalysis, 2021, 404, 46-55.	3.1	6
6	Organic photoelectrode engineering: accelerating photocurrent generation <i>via</i> donor–acceptor interactions and surface-assisted synthetic approach. Journal of Materials Chemistry A, 2021, 9, 7162-7171.	5 . 2	13
7	Two-dimensional tetragonal GaOI and InOI sheets: In-plane anisotropic optical properties and application to photocatalytic water splitting. Catalysis Today, 2020, 340, 178-182.	2.2	20
8	Identification of the most active sites for tetrahydropyranylation in zeolites: MFI as a test case. Catalysis Today, 2020, 345, 165-174.	2.2	4
9	Systematic computational investigation of an Ni3Fe catalyst for the OER. Catalysis Today, 2020, 345, 220-226.	2.2	9
10	Self-supported PPy-encapsulated CoS ₂ nanosheets anchored on the TiO _{2â⁻x} nanorod array support by Ti–S bonds for ultra-long life hybrid Mg ²⁺ /Li ⁺ batteries. Journal of Materials Chemistry A, 2020, 8, 22712-22719.	5 . 2	24
11	Mechanistic Insight into the Catalytic NO Oxidation by the MIL-100 MOF Platform: Toward the Prediction of More Efficient Catalysts. ACS Catalysis, 2020, 10, 9445-9450.	5.5	22
12	Design of MoS ₂ /Graphene van der Waals Heterostructure as Highly Efficient and Stable Electrocatalyst for Hydrogen Evolution in Acidic and Alkaline Media. ACS Applied Materials & amp; Interfaces, 2020, 12, 24777-24785.	4.0	62
13	Real-time optical and electronic sensing with a \hat{l}^2 -amino enone linked, triazine-containing 2D covalent organic framework. Nature Communications, 2019, 10, 3228.	5.8	117
14	Mössbauerite as Iron-Only Layered Oxyhydroxide Catalyst for WO ₃ Photoanodes. Inorganic Chemistry, 2019, 58, 9655-9662.	1.9	9
15	Structure Determination of the Oxygen Evolution Catalyst Mössbauerite. Journal of Physical Chemistry C, 2019, 123, 25157-25165.	1.5	7
16	Unexpected intercalation-dominated potassium storage in WS2 as a potassium-ion battery anode. Nano Research, 2019, 12, 2997-3002.	5.8	77
17	Insights into the intrinsic capacity of interlayer-expanded MoS ₂ as a Li-ion intercalation host. Journal of Materials Chemistry A, 2019, 7, 1187-1195.	5.2	32
18	Bifunctional oxygen evolution and supercapacitor electrode with integrated architecture of NiFe-layered double hydroxides and hierarchical carbon framework. Nanotechnology, 2019, 30, 325402.	1.3	14

#	Article	IF	Citations
19	Semiconducting Crystalline Two-Dimensional Polyimide Nanosheets with Superior Sodium Storage Properties. ACS Nano, 2019, 13, 2473-2480.	7.3	46
20	Tuning the Porosity and Photocatalytic Performance of Triazineâ€Based Graphdiyne Polymers through Polymorphism. ChemSusChem, 2019, 12, 194-199.	3.6	39
21	New Layered Triazine Framework/Exfoliated 2D Polymer with Superior Sodiumâ€Storage Properties. Advanced Materials, 2018, 30, 1705401.	11.1	177
22	A Pseudolayered MoS ₂ as Liâ€ion Intercalation Host with Enhanced Rate Capability and Durability. Small, 2018, 14, e1803344.	5.2	35
23	Fluorescent Sulphur―and Nitrogen ontaining Porous Polymers with Tuneable Donor–Acceptor Domains for Lightâ€Driven Hydrogen Evolution. Chemistry - A European Journal, 2018, 24, 11916-11921.	1.7	38
24	Fewâ€Layer Silicene Nanosheets with Superior Lithiumâ€Storage Properties. Advanced Materials, 2018, 30, e1800838.	11.1	126
25	Near-room-temperature Chern insulator and Dirac spin-gapless semiconductor: nickel chloride monolayer. Nanoscale, 2017, 9, 2246-2252.	2.8	120
26	Theoretical investigation of CO catalytic oxidation by a Fe–PtSe ₂ monolayer. RSC Advances, 2017, 7, 19630-19638.	1.7	10
27	The Influence of Water on the Performance of Molybdenum Carbide Catalysts in Hydrodeoxygenation Reactions: A Combined Theoretical and Experimental Study. ChemCatChem, 2017, 9, 1985-1991.	1.8	29
28	Exploring the stability and reactivity of Ni2P and Mo2C catalysts using ab initio atomistic thermodynamics and conceptual DFT approaches. Biomass Conversion and Biorefinery, 2017, 7, 377-383.	2.9	3
29	New two-dimensional Mn-based MXenes with room-temperature ferromagnetism and half-metallicity. Journal of Materials Chemistry C, 2016, 4, 11143-11149.	2.7	164
30	High temperature spin-polarized semiconductivity with zero magnetization in two-dimensional Janus MXenes. Journal of Materials Chemistry C, 2016, 4, 6500-6509.	2.7	127
31	Unusual Dirac half-metallicity with intrinsic ferromagnetism in vanadium trihalide monolayers. Journal of Materials Chemistry C, 2016, 4, 2518-2526.	2.7	202