Peter W Hunt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/324980/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Differential responses of abomasal transcriptome to Haemonchus contortus infection between Haemonchus-selected and Trichostrongylus-selected merino sheep. Parasitology International, 2022, 87, 102539.	1.3	3
2	Selection of Genome-Wide SNPs for Pooled Allelotyping Assays Useful for Population Monitoring. Genome Biology and Evolution, 2022, 14, .	2.5	0
3	From innate to adaptive immunity: Abomasal transcriptomic responses of merino sheep to Haemonchus contortus infection. Molecular and Biochemical Parasitology, 2021, 246, 111424.	1.1	4
4	A comparison of eggshell mineral composition between cage and free-range eggs via inductively coupled plasma-optical emission spectrometry. Animal Production Science, 2020, 60, 2060.	1.3	2
5	The impacts of Ascaridia galli on performance, health, and immune responses of laying hens: new insights into an old problem. Poultry Science, 2019, 98, 6517-6526.	3.4	42
6	Transcriptome analysis unraveled potential mechanisms of resistance to Haemonchus contortus infection in Merino sheep populations bred for parasite resistance. Veterinary Research, 2019, 50, 7.	3.0	28
7	Quantification of differences in resistance to gastrointestinal nematode infections in sheep using a multivariate blood parameter. Veterinary Parasitology, 2019, 270, 31-39.	1.8	7
8	Production and active transport of immunoglobulins within the ruminant mammary gland. Veterinary Immunology and Immunopathology, 2019, 211, 75-84.	1.2	5
9	Analysis of antibody levels in egg yolk for detection of exposure to Ascaridia galli parasites in commercial laying hens. Poultry Science, 2019, 98, 179-187.	3.4	4
10	Effect of an artificial Ascaridia galli infection on egg production, immune response, and liver lipid reserve of free-range laying hens. Poultry Science, 2018, 97, 494-502.	3.4	12
11	Detection of Ascaridia galli infection in free-range laying hens. Veterinary Parasitology, 2018, 256, 9-15.	1.8	22
12	Performance, egg quality, and liver lipid reserves of free-range laying hens naturally infected with Ascaridia galli. Poultry Science, 2018, 97, 1914-1921.	3.4	15
13	Immune responses following experimental infection with <i>Ascaridia galli</i> and necrotic enteritis in broiler chickens. Avian Pathology, 2017, 46, 602-609.	2.0	22
14	Mutations in the Hco-mptl-1 gene in a field-derived monepantel-resistant isolate of Haemonchus contortus. International Journal for Parasitology: Drugs and Drug Resistance, 2017, 7, 236-240.	3.4	17
15	Pathogenicity, tissue distribution, shedding and environmental detection of two strains of IBDV following infection of chickens at 0 and 14 days of age. Avian Pathology, 2017, 46, 242-255.	2.0	21
16	Larval development assays reveal the presence of sub-populations showing high- and low-level resistance in a monepantel (Zolvix®)-resistant isolate of Haemonchus contortus. Veterinary Parasitology, 2016, 220, 77-82.	1.8	27
17	Haemonchus contortus: the then and now, and where to from here?. International Journal for Parasitology, 2016, 46, 755-769.	3.1	140
18	Real-time PCR quantification of infectious laryngotracheitis virus in chicken tissues, faeces, isolator-dust and bedding material over 28 days following infection reveals high levels in faeces and dust. Journal of General Virology, 2015, 96, 3338-3347.	2.9	16

Peter W Hunt

#	Article	IF	CITATIONS
19	Recent advances in candidate-gene and whole-genome approaches to the discovery of anthelmintic resistance markers and the description of drug/receptor interactions. International Journal for Parasitology: Drugs and Drug Resistance, 2014, 4, 164-184.	3.4	149
20	A one shot blood phenotype can identify sheep that resist Haemonchus contortus challenge. Veterinary Parasitology, 2014, 205, 595-605.	1.8	10
21	Understanding parasitic infection in sheep to design more efficient animal selection strategies. Veterinary Journal, 2013, 197, 143-152.	1.7	9
22	DNA-based methodology for the quantification of gastrointestinal nematode eggs in sheep faeces. Veterinary Parasitology, 2013, 198, 325-335.	1.8	28
23	Relative level of thiabendazole resistance associated with the E198A and F200Y SNPs in larvae of a multi-drug resistant isolate of Haemonchus contortus. International Journal for Parasitology: Drugs and Drug Resistance, 2012, 2, 92-97.	3.4	41
24	Development of a modified molecular diagnostic procedure for the identification and quantification of naturally occurring strongylid larvae on pastures. Veterinary Parasitology, 2012, 190, 467-481.	1.8	13
25	Proteomic analysis of the abomasal mucosal response following infection by the nematode, Haemonchus contortus, in genetically resistant and susceptible sheep. Journal of Proteomics, 2012, 75, 2141-2152.	2.4	24
26	Trichostrongylus colubriformis larvae induce necrosis and release of IL33 from intestinal epithelial cells in vitro: Implications for gastrointestinal nematode vaccine design. International Journal for Parasitology, 2012, 42, 295-304.	3.1	18
27	How to make DNA count: DNA-based diagnostic tools in veterinary parasitology. Veterinary Parasitology, 2012, 186, 101-108.	1.8	11
28	Molecular diagnosis of infections and resistance in veterinary and human parasites. Veterinary Parasitology, 2011, 180, 12-46.	1.8	21
29	Divergent ghrelin expression patterns in sheep genetically resistant or susceptible to gastrointestinal nematodes. Veterinary Parasitology, 2011, 181, 194-202.	1.8	9
30	The use of DNA markers to map anthelmintic resistance loci in an intraspecific cross of <i>Haemonchus contortus</i> . Parasitology, 2010, 137, 705-717.	1.5	20
31	Detection of quantitative trait loci for internal parasite resistance in sheep. I. Linkage analysis in a Romney×Merino sheep backcross population. Parasitology, 2010, 137, 1275-1282.	1.5	30
32	Discrimination of SNP genotypes associated with complex haplotypes by high resolution melting analysis in almond: implications for improved marker efficiencies. Molecular Breeding, 2010, 25, 351-357.	2.1	18
33	Construction of an almond linkage map in an Australian population Nonpareil × Lauranne. BMC Genomics, 2010, 11, 551.	2.8	28
34	Expression of genes in gastrointestinal and lymphatic tissues during parasite infection in sheep genetically resistant or susceptible to Trichostrongylus colubriformis and Haemonchus contortus. International Journal for Parasitology, 2010, 40, 417-429.	3.1	59
35	Nematode challenge induces differential expression of oxidant, antioxidant and mucous genes down the longitudinal axis of the sheep gut. Parasite Immunology, 2010, 32, 36-46.	1.5	31
36	Selective transport of IgE into ovine mammary secretions. Research in Veterinary Science, 2010, 89, 184-190.	1.9	9

Peter W Hunt

#	Article	IF	CITATIONS
37	A combined microscopic-molecular method for the diagnosis of strongylid infections in sheep. International Journal for Parasitology, 2009, 39, 1277-1287.	3.1	93
38	Mapping SNP-anchored genes using high-resolution melting analysis in almond. Molecular Genetics and Genomics, 2009, 282, 273-281.	2.1	43
39	High resolution melting analysis of almond SNPs derived from ESTs. Theoretical and Applied Genetics, 2008, 118, 1-14.	3.6	146
40	Toward practical, DNA-based diagnostic methods for parasitic nematodes of livestock — Bionomic and biotechnological implications. Biotechnology Advances, 2008, 26, 325-334.	11.7	134
41	Gastrointestinal nematode challenge induces some conserved gene expression changes in the gut mucosa of genetically resistant sheep. International Journal for Parasitology, 2008, 38, 431-442.	3.1	86
42	Genetic and phenotypic differences between isolates of Haemonchus contortus in Australia. International Journal for Parasitology, 2008, 38, 885-900.	3.1	55
43	Future perspectives for the implementation of genetic markers for parasite resistance in sheep. Tropical Biomedicine, 2008, 25, 18-33.	0.7	9
44	Identification of immuno-reactive proteins from a sheep gastrointestinal nematode, Trichostrongylus colubriformis, using two-dimensional electrophoresis and mass spectrometry. International Journal for Parasitology, 2007, 37, 1419-1429.	3.1	41
45	Hemoglobin is essential for normal growth of Arabidopsis organs. Physiologia Plantarum, 2006, 127, 157-166.	5.2	75
46	Increased level of hemoglobin 1 enhances survival of hypoxic stress and promotes early growth in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 17197-17202.	7.1	170
47	Expression and evolution of functionally distinct haemoglobin genes in plants. Plant Molecular Biology, 2001, 47, 677-692.	3.9	139
48	A hemoglobin from plants homologous to truncated hemoglobins of microorganisms. Proceedings of the United States of America, 2001, 98, 10119-10124.	7.1	182
49	The New Subfamily of Cathepsin-Z-like Protease Genes Includes Tc-cpz-1, a Cysteine Protease Gene Expressed in Toxocara canis Adults and Infective Stage Larvae. Experimental Parasitology, 2000, 94, 201-207.	1.2	19
50	A Hemoglobin with an Optical Function. Journal of Biological Chemistry, 2000, 275, 4810-4815.	3.4	48
51	Cloning and expression of an aquaporin-like gene from a parasitic nematode. Molecular and Biochemical Parasitology, 1999, 99, 287-293.	1.1	13