
## Andrew Hill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3249672/publications.pdf Version: 2024-02-01



ΔΝΙΟΡΕΊΛ ΗΠΙ

| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production.<br>Nature Communications, 2014, 5, 3131.                                                      | 5.8 | 488       |
| 2  | Porphyrin–phospholipid liposomes permeabilized by near-infrared light. Nature Communications, 2014,<br>5, 3546.                                                                                 | 5.8 | 282       |
| 3  | Overcoming Gene-Delivery Hurdles: Physiological Considerations for Nonviral Vectors. Trends in Biotechnology, 2016, 34, 91-105.                                                                 | 4.9 | 132       |
| 4  | Metabolic engineering of Yarrowia lipolytica for itaconic acid production. Metabolic Engineering, 2015, 32, 66-73.                                                                              | 3.6 | 119       |
| 5  | Phenotypic Variation during Biofilm Formation: Implications for Anti-Biofilm Therapeutic Design.<br>Materials, 2018, 11, 1086.                                                                  | 1.3 | 49        |
| 6  | Mannosylated poly(beta-amino esters) for targeted antigen presenting cell immune modulation.<br>Biomaterials, 2015, 37, 333-344.                                                                | 5.7 | 43        |
| 7  | Directed vaccination against pneumococcal disease. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6898-6903.                                       | 3.3 | 39        |
| 8  | Heterologous production of plant-derived isoprenoid products in microbes and the application of metabolic engineering and synthetic biology. Current Opinion in Plant Biology, 2014, 19, 8-13.  | 3.5 | 38        |
| 9  | Reconstitution of Kinamycin Biosynthesis within the Heterologous Host <i>Streptomyces albus</i> J1074. Journal of Natural Products, 2018, 81, 72-77.                                            | 1.5 | 35        |
| 10 | E. coli metabolic engineering for gram scale production of a plant-based anti-inflammatory agent.<br>Metabolic Engineering, 2016, 38, 382-388.                                                  | 3.6 | 34        |
| 11 | Tailoring pathway modularity in the biosynthesis of erythromycin analogs heterologously engineered<br>in <i>E. coli</i> . Science Advances, 2015, 1, e1500077.                                  | 4.7 | 32        |
| 12 | Heterologous Biosynthesis of Type II Polyketide Products Using E. coli. ACS Chemical Biology, 2020, 15,<br>1177-1183.                                                                           | 1.6 | 31        |
| 13 | Total Biosynthesis and Diverse Applications of the Nonribosomal Peptide-Polyketide Siderophore<br>Yersiniabactin. Applied and Environmental Microbiology, 2015, 81, 5290-5298.                  | 1.4 | 28        |
| 14 | Comprehensive vaccine design for commensal disease progression. Science Advances, 2017, 3, e1701797.                                                                                            | 4.7 | 28        |
| 15 | Production of the polyketide 6-deoxyerythronolide B in the heterologous host Bacillus subtilis.<br>Applied Microbiology and Biotechnology, 2016, 100, 1209-1220.                                | 1.7 | 27        |
| 16 | Heterologous erythromycin production across strain and plasmid construction. Biotechnology Progress, 2018, 34, 271-276.                                                                         | 1.3 | 26        |
| 17 | Structure–Function Assessment of Mannosylated Poly(β-amino esters) upon Targeted Antigen<br>Presenting Cell Gene Delivery. Biomacromolecules, 2015, 16, 1534-1541.                              | 2.6 | 24        |
| 18 | Grafting Activated Graphene Oxide Nanosheets onto Ultrafiltration Membranes Using Polydopamine<br>to Enhance Antifouling Properties. ACS Applied Materials & Interfaces, 2020, 12, 48179-48187. | 4.0 | 24        |

ANDREW HILL

| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Recent progress in therapeutic natural product biosynthesis using Escherichia coli. Current Opinion in Biotechnology, 2016, 42, 7-12.                                                                                                     | 3.3 | 23        |
| 20 | Siderophore natural products as pharmaceutical agents. Current Opinion in Biotechnology, 2021, 69, 242-251.                                                                                                                               | 3.3 | 23        |
| 21 | Heterologous biosynthesis as a platform for producing new generation natural products. Current<br>Opinion in Biotechnology, 2020, 66, 123-130.                                                                                            | 3.3 | 19        |
| 22 | In situ pneumococcal vaccine production and delivery through a hybrid biological-biomaterial vector. Science Advances, 2016, 2, e1600264.                                                                                                 | 4.7 | 18        |
| 23 | Engineering a Next-Generation Glycoconjugate-LikeStreptococcus pneumoniaeVaccine. ACS Infectious Diseases, 2018, 4, 1553-1563.                                                                                                            | 1.8 | 18        |
| 24 | Monacycliones G–K and <i>ent</i> -Gephyromycin A, Angucycline Derivatives from the Marine-Derived<br><i>Streptomyces</i> sp. HDN15129. Journal of Natural Products, 2020, 83, 2749-2755.                                                  | 1.5 | 18        |
| 25 | Improved heterologous production of the nonribosomal peptideâ€polyketide siderophore yersiniabactin<br>through metabolic engineering and induction optimization. Biotechnology Progress, 2016, 32, 1412-1417.                             | 1.3 | 17        |
| 26 | Loading and releasing ciprofloxacin in photoactivatable liposomes. Biochemical Engineering Journal,<br>2019, 141, 43-48.                                                                                                                  | 1.8 | 17        |
| 27 | The Continuing Development of E. coli as a Heterologous Host for Complex Natural Product<br>Biosynthesis. Methods in Molecular Biology, 2016, 1401, 121-134.                                                                              | 0.4 | 13        |
| 28 | Influence of molecular weight upon mannosylated bio-synthetic hybrids for targeted antigen presenting cell gene delivery. Biomaterials, 2015, 58, 103-111.                                                                                | 5.7 | 11        |
| 29 | Flux Balance Analysis for Media Optimization and Genetic Targets to Improve Heterologous<br>Siderophore Production. IScience, 2020, 23, 101016.                                                                                           | 1.9 | 11        |
| 30 | Vaccine Delivery and Immune Response Basics. Methods in Molecular Biology, 2021, 2183, 1-8.                                                                                                                                               | 0.4 | 11        |
| 31 | Contemporary approaches for nonviral gene therapy. Discovery Medicine, 2015, 19, 447-54.                                                                                                                                                  | 0.5 | 11        |
| 32 | Improved <i>Escherichia coli</i> Bactofection and Cytotoxicity by Heterologous Expression of<br>Bacteriophage ΦX174 Lysis Gene E. Molecular Pharmaceutics, 2015, 12, 1691-1700.                                                           | 2.3 | 10        |
| 33 | Yersiniabactin metal binding characterization and removal of nickel from industrial wastewater.<br>Biotechnology Progress, 2017, 33, 1548-1554.                                                                                           | 1.3 | 10        |
| 34 | Antibacterial <i>p</i> -Terphenyl with a Rare 2,2′-Bithiazole Substructure and Related Compounds<br>Isolated from the Marine-Derived Actinomycete <i>Nocardiopsis</i> sp. HDN154086. Journal of Natural<br>Products, 2021, 84, 1226-1231. | 1.5 | 10        |
| 35 | Complex natural product production methods and options. Synthetic and Systems Biotechnology, 2021, 6, 1-11.                                                                                                                               | 1.8 | 10        |
| 36 | Biomaterials at the interface of nano- and micro-scale vector–cellular interactions in genetic vaccine<br>design. Journal of Materials Chemistry B, 2014, 2, 8053-8068.                                                                   | 2.9 | 8         |

Andrew Hill

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Molecular variation of the nonribosomal peptideâ€polyketide siderophore yersiniabactin through<br>biosynthetic and metabolic engineering. Biotechnology and Bioengineering, 2016, 113, 1067-1074. | 1.7 | 8         |
| 38 | Enhancing vaccine effectiveness with delivery technology. Current Opinion in Biotechnology, 2016, 42, 24-29.                                                                                      | 3.3 | 8         |
| 39 | Broadened glycosylation patterning of heterologously produced erythromycin. Biotechnology and Bioengineering, 2018, 115, 2771-2777.                                                               | 1.7 | 8         |
| 40 | PEGylated Amine-Functionalized Poly(Îμ-caprolactone) for the Delivery of Plasmid DNA. Materials, 2020,<br>13, 898.                                                                                | 1.3 | 8         |
| 41 | Bimodal Targeting Using Sulfonated, Mannosylated <scp>PEI</scp> for Combined Gene Delivery and Photodynamic Therapy. Photochemistry and Photobiology, 2017, 93, 600-608.                          | 1.3 | 7         |
| 42 | Engineering Heterologous Production of Salicylate Glucoside and Glycosylated Variants. Frontiers in<br>Microbiology, 2018, 9, 2241.                                                               | 1.5 | 7         |
| 43 | Influenza Virus Infects and Depletes Activated Adaptive Immune Responders. Advanced Science, 2021, 8, e2100693.                                                                                   | 5.6 | 7         |
| 44 | Increased production of yersiniabactin and an anthranilate analog through media optimization.<br>Biotechnology Progress, 2017, 33, 1193-1200.                                                     | 1.3 | 6         |
| 45 | Intranasal Vaccine Delivery Technology for Respiratory Tract Disease Application with a Special Emphasis on Pneumococcal Disease. Vaccines, 2021, 9, 589.                                         | 2.1 | 6         |
| 46 | Liposomal Encapsulation of Polysaccharides (LEPS) as an Effective Vaccine Strategy to Protect Aged<br>Hosts Against S. pneumoniae Infection. Frontiers in Aging, 2021, 2, .                       | 1.2 | 6         |
| 47 | Liposomal Dual Delivery of Both Polysaccharide and Protein Antigens. Methods in Molecular Biology, 2021, 2183, 477-487.                                                                           | 0.4 | 4         |
| 48 | Pressing diseases that represent promising targets for gene therapy. Discovery Medicine, 2017, 24, 313-322.                                                                                       | 0.5 | 4         |
| 49 | Design Variation of a Dual-Antigen Liposomal Vaccine Carrier System. Materials, 2019, 12, 2809.                                                                                                   | 1.3 | 3         |
| 50 | Consolidated plasmid Design for Stabilized Heterologous Production of the complex natural product<br>Siderophore Yersiniabactin. Biotechnology Progress, 2021, 37, e3103.                         | 1.3 | 3         |
| 51 | Antigen delivery format variation and formulation stability through use of a hybrid vector. Vaccine:<br>X, 2019, 1, 100012.                                                                       | 0.9 | 2         |
| 52 | Extended Polysaccharide Analysis within the Liposomal Encapsulation of Polysaccharides System.<br>Materials, 2020, 13, 3320.                                                                      | 1.3 | 2         |
| 53 | Yarrowia lipolytica as a Cell Factory for Oleochemical Biotechnology. , 2016, , 1-18.                                                                                                             |     | 2         |
| 54 | Yarrowia lipolytica as a Cell Factory for Oleochemical Biotechnology. , 2017, , 459-476.                                                                                                          |     | 1         |

ANDREW HILL

| #  | Article                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Constraintâ€based metabolic targets for the improved production of heterologous compounds across<br>molecular classification. AICHE Journal, 2018, 64, 4208-4217.      | 1.8 | 1         |
| 56 | Editorial overview: Pharmaceutical biotechnology. Current Opinion in Biotechnology, 2021, 69, vi-viii.                                                                 | 3.3 | 1         |
| 57 | Salicylate Glucoside as a Nontoxic Plant Protectant Alternative to Salicylic Acid. ACS Agricultural Science and Technology, 2021, 1, 515-521.                          | 1.0 | 1         |
| 58 | Yarrowia lipolytica as a Cell Factory for Oleochemical Biotechnology. , 2017, , 1-19.                                                                                  |     | 1         |
| 59 | A Hybrid Biological–Biomaterial Vector for Antigen Delivery. Methods in Molecular Biology, 2021,<br>2183, 461-475.                                                     | 0.4 | 1         |
| 60 | Editorial overview: Pharmaceutical biotechnology: New approaches for dynamic disease targets.<br>Current Opinion in Biotechnology, 2016, 42, vi-vii.                   | 3.3 | 0         |
| 61 | A Transition to Targeted or â€~Smart' Vaccines: How Understanding Commensal Colonization Can Lead to Selective Vaccination. Pharmaceutical Medicine, 2018, 32, 95-102. | 1.0 | Ο         |
| 62 | Improving E. coli by of Bacteriophage $\hat{I}_1^{\dagger}X174$ Gene. Methods in Molecular Biology, 2021, 2211, 3-14.                                                  | 0.4 | 0         |