Sebastian Reuter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3249640/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interferon-Regulatory Factor 4 Is Essential for the Developmental Program of T Helper 9 Cells. Immunity, 2010, 33, 192-202.	14.3	465
2	Helicobacter pylori infection prevents allergic asthma in mouse models through the induction of regulatory T cells. Journal of Clinical Investigation, 2011, 121, 3088-3093.	8.2	391
3	DC-derived IL-18 drives Treg differentiation, murine Helicobacter pylori–specific immune tolerance, and asthma protection. Journal of Clinical Investigation, 2012, 122, 1082-1096.	8.2	260
4	<i>Helicobacter pylori</i> γ-glutamyl transpeptidase and vacuolating cytotoxin promote gastric persistence and immune tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3047-3052.	7.1	200
5	IL-22 Is Produced by Innate Lymphoid Cells and Limits Inflammation in Allergic Airway Disease. PLoS ONE, 2011, 6, e21799.	2.5	118
6	Effective treatment of allergic airway inflammation with <i>Helicobacter pylori</i> immunomodulators requires BATF3-dependent dendritic cells and IL-10. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11810-11815.	7.1	114
7	Protein kinase CK2 enables regulatory T cells to suppress excessive TH2 responses in vivo. Nature Immunology, 2015, 16, 267-275.	14.5	102
8	IL-10 and Regulatory T Cells Cooperate in Allergen-Specific Immunotherapy To Ameliorate Allergic Asthma. Journal of Immunology, 2015, 194, 887-897.	0.8	92
9	Production of Serotonin by Tryptophan Hydroxylase 1 and Release via Platelets Contribute to Allergic Airway Inflammation. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 476-485.	5.6	86
10	Inhibition of cAMP Degradation Improves Regulatory T Cell-Mediated Suppression. Journal of Immunology, 2009, 182, 4017-4024.	0.8	85
11	The Tick Salivary Protein Sialostatin L Inhibits the Th9-Derived Production of the Asthma-Promoting Cytokine IL-9 and Is Effective in the Prevention of Experimental Asthma. Journal of Immunology, 2012, 188, 2669-2676.	0.8	68
12	Protection from graft-versus-host disease by HIV-1 envelope protein gp120-mediated activation of human CD4+CD25+ regulatory T cells. Blood, 2009, 114, 1263-1269.	1.4	67
13	Tc9 cells, a new subset of CD8 ⁺ T cells, support Th2â€mediated airway inflammation. European Journal of Immunology, 2013, 43, 606-618.	2.9	58
14	The Wnt/β-Catenin Pathway Attenuates Experimental Allergic Airway Disease. Journal of Immunology, 2014, 193, 485-495.	0.8	47
15	Mast Cells in Allergic Asthma and Beyond. Yonsei Medical Journal, 2010, 51, 797.	2.2	38
16	TLR3 but Not TLR7/8 Ligand Induces Allergic Sensitization to Inhaled Allergen. Journal of Immunology, 2012, 188, 5123-5131.	0.8	38
17	Genetic Variation Determines Mast Cell Functions in Experimental Asthma. Journal of Immunology, 2011, 186, 7225-7231.	0.8	37
18	Tick Salivary Sialostatin L Represses the Initiation of Immune Responses by Targeting IRF4-Dependent Transcription in Murine Mast Cells. Journal of Immunology, 2015, 195, 621-631.	0.8	35

SEBASTIAN REUTER

#	Article	IF	CITATIONS
19	Take the Wnt out of the inflammatory sails: modulatory effects of Wnt in airway diseases. Laboratory Investigation, 2016, 96, 177-185.	3.7	33
20	Regulatory T Cells More Effectively Suppress Th1-Induced Airway Inflammation Compared with Th2. Journal of Immunology, 2011, 186, 2238-2244.	0.8	28
21	CD4-mediated regulatory T-cell activation inhibits the development of disease in a humanized mouse model of allergic airway disease. Journal of Allergy and Clinical Immunology, 2012, 129, 521-528.e7.	2.9	28
22	Enhanced production of CCL18 by tolerogenic dendritic cells is associated with inhibition of allergic airway reactivity. Journal of Allergy and Clinical Immunology, 2012, 130, 1384-1393.	2.9	25
23	Mast Cells Induce Migration of Dendritic Cells in a Murine Model of Acute Allergic Airway Disease. International Archives of Allergy and Immunology, 2010, 151, 214-222.	2.1	24
24	Mast cell-derived mediators promote murine neutrophil effector functions. International Immunology, 2013, 25, 553-561.	4.0	22
25	Coincident airway exposure to low-potency allergen and cytomegalovirus sensitizes for allergic airway disease by viral activation of migratory dendritic cells. PLoS Pathogens, 2019, 15, e1007595.	4.7	19
26	The Canonical but Not the Noncanonical Wnt Pathway Inhibits the Development of Allergic Airway Disease. Journal of Immunology, 2018, 201, 1855-1864.	0.8	15
27	Influence of the early-life gut microbiota on the immune responses to an inhaled allergen. Mucosal Immunology, 2022, 15, 1000-1011.	6.0	15
28	Interruption of CD28-mediated costimulation during allergen challenge protects mice from allergic airway disease. Journal of Allergy and Clinical Immunology, 2012, 130, 1394-1403.e4.	2.9	13
29	Dual Role of Interleukin-1α in Delayed-Type Hypersensitivity and Airway Hyperresponsiveness. International Archives of Allergy and Immunology, 2010, 152, 303-312.	2.1	11
30	ADAMTS-13 regulates neutrophil recruitment in a mouse model of invasive pulmonary aspergillosis. Scientific Reports, 2017, 7, 7184.	3.3	10
31	Divergent Effects of Biolistic Gene Transfer in a Mouse Model of Allergic Airway Inflammation. American Journal of Respiratory Cell and Molecular Biology, 2008, 38, 38-46.	2.9	9
32	Single and Synergistic Effects of Type 2 Cytokines on Eosinophils and Asthma Hallmarks. Journal of Immunology, 2020, 204, 550-558.	0.8	9
33	IRF4 Expression Is Required for the Immunoregulatory Activity of Conventional Type 2 Dendritic Cells in Settings of Chronic Bacterial Infection and Cancer. Journal of Immunology, 2020, 205, 1933-1943.	0.8	8
34	Cylindromatosis (Cyld) gene mutation in T cells promotes the development of an IL-9-dependent allergic phenotype in experimental asthma. Cellular Immunology, 2016, 308, 27-34.	3.0	7