Gerhard Dahl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3249064/publications.pdf

Version: 2024-02-01

42 papers

6,129 citations

33 h-index 42 g-index

42 all docs 42 docs citations

times ranked

42

3673 citing authors

#	Article	IF	CITATIONS
1	Pannexin membrane channels are mechanosensitive conduits for ATP. FEBS Letters, 2004, 572, 65-68.	2.8	719
2	The Pannexin 1 Channel Activates the Inflammasome in Neurons and Astrocytes. Journal of Biological Chemistry, 2009, 284, 18143-18151.	3.4	476
3	Activation of pannexin 1 channels by ATP through P2Y receptors and by cytoplasmic calcium. FEBS Letters, 2006, 580, 239-244.	2.8	461
4	Pannexin 1 in erythrocytes: Function without a gap. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7655-7659.	7.1	450
5	Pannexin1 is part of the pore forming unit of the P2X7receptor death complex. FEBS Letters, 2007, 581, 483-488.	2.8	402
6	Pannexin 1: The Molecular Substrate of Astrocyte "Hemichannels― Journal of Neuroscience, 2009, 29, 7092-7097.	3.6	335
7	Pannexin channels are not gap junction hemichannels. Channels, 2011, 5, 193-197.	2.8	305
8	Pannexin1 Channels Contain a Glycosylation Site That Targets the Hexamer to the Plasma Membrane. Journal of Biological Chemistry, 2007, 282, 31733-31743.	3.4	247
9	A permeant regulating its permeation pore: inhibition of pannexin 1 channels by ATP. American Journal of Physiology - Cell Physiology, 2009, 296, C250-C255.	4.6	231
10	Connexin and pannexin mediated cell–cell communication. Neuron Glia Biology, 2007, 3, 199-208.	1.6	212
11	Purine Release, Metabolism, and Signaling in the Inflammatory Response. Annual Review of Immunology, 2019, 37, 325-347.	21.8	209
12	ATP release through pannexon channels. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140191.	4.0	190
13	Pannexin 1 Contributes to ATP Release in Airway Epithelia. American Journal of Respiratory Cell and Molecular Biology, 2009, 41, 525-534.	2.9	188
14	Pannexin: To gap or not to gap, is that a question?. IUBMB Life, 2006, 58, 409-419.	3.4	155
15	ATP signaling is deficient in cultured pannexin1â€null mouse astrocytes. Glia, 2012, 60, 1106-1116.	4.9	147
16	The bizarre pharmacology of the ATP release channel pannexin1. Neuropharmacology, 2013, 75, 583-593.	4.1	111
17	The membrane protein Pannexin1 forms two open-channel conformations depending on the mode of activation. Science Signaling, 2014, 7, ra69.	3.6	108
18	Trafficking Dynamics of Glycosylated Pannexin1 Proteins. Cell Communication and Adhesion, 2008, 15, 119-132.	1.0	100

#	Article	IF	CITATIONS
19	Pannexin: From discovery to bedside in 11±4 years?. Brain Research, 2012, 1487, 150-159.	2.2	98
20	Cell/cell channel formation involves disulfide exchange. FEBS Journal, 1991, 197, 141-144.	0.2	89
21	The food dye FD&C Blue No. 1 is a selective inhibitor of the ATP release channel Panx1. Journal of General Physiology, 2013, 141, 649-656.	1.9	79
22	SCAM analysis of Panx1 suggests a peculiar pore structure. Journal of General Physiology, 2010, 136, 515-527.	1.9	75
23	A connexin-32 mutation associated with Charcot-Marie-Tooth disease does not affect channel formation in oocytes. FEBS Letters, 1994, 351, 90-94.	2.8	66
24	Innexin and pannexin channels and their signaling. FEBS Letters, 2014, 588, 1396-1402.	2.8	66
25	Neuroglial ATP release through innexin channels controls microglial cell movement to a nerve injury. Journal of General Physiology, 2010, 136, 425-442.	1.9	62
26	The Pannexin1 membrane channel: distinct conformations and functions. FEBS Letters, 2018, 592, 3201-3209.	2.8	62
27	Pannexin1: a multifunction and multiconductance and/or permeability membrane channel. American Journal of Physiology - Cell Physiology, 2018, 315, C290-C299.	4.6	57
28	Two non-vesicular ATP release pathways in the mouse erythrocyte membrane. FEBS Letters, 2011, 585, 3430-3435.	2.8	55
29	The potassium channel subunit $\text{Kv}\hat{l}^2$ 3 interacts with pannexin 1 and attenuates its sensitivity to changes in redox potentials. FEBS Journal, 2009, 276, 6258-6270.	4.7	50
30	Gap Junction–Mimetic Peptides do Work, but in Unexpected Ways. Cell Communication and Adhesion, 2007, 14, 259-264.	1.0	46
31	ATP and potassium ions: a deadly combination for astrocytes. Scientific Reports, 2014, 4, 4576.	3.3	44
32	Alanine substitution scanning of pannexin1 reveals amino acid residues mediating ATP sensitivity. Purinergic Signalling, 2012, 8, 81-90.	2.2	40
33	Arachidonic acid closes innexin/pannexin channels and thereby inhibits microglia cell movement to a nerve injury. Developmental Neurobiology, 2013, 73, 621-631.	3.0	34
34	Exchange of conductance and gating properties between gap junction hemichannels. FEBS Letters, 1999, 451, 113-117.	2.8	33
35	WHERE ARE THE GATES IN GAP JUNCTION CHANNELS?. Clinical and Experimental Pharmacology and Physiology, 1996, 23, 1047-1052.	1.9	23
36	Structure versus function: Are new conformations of pannexin 1 yet to be resolved?. Journal of General Physiology, 2021, 153, .	1.9	22

#	Article	IF	CITATIONS
37	Dual Oxidase 2 (Duox2) Regulates Pannexin 1-mediated ATP Release in Primary Human Airway Epithelial Cells via Changes in Intracellular pH and Not H2O2 Production. Journal of Biological Chemistry, 2016, 291, 6423-6432.	3.4	21
38	Cationic control of Panx1 channel function. American Journal of Physiology - Cell Physiology, 2018, 315, C279-C289.	4.6	18
39	Mechanosensitive unpaired innexin channels in <i>C. elegans</i> touch neurons. American Journal of Physiology - Cell Physiology, 2014, 307, C966-C977.	4.6	17
40	Relaxation of Myometrium by Calcitonin Gene-Related Peptide Is Independent of Nitric Oxide Synthase Activity in Mouse Uterus 1. Biology of Reproduction, 2000, 63, 1421-1427.	2.7	12
41	Design and synthesis of the first indole-based blockers of Panx-1 channel. European Journal of Medicinal Chemistry, 2021, 223, 113650.	5.5	8
42	New Panx-1 Blockers: Synthesis, Biological Evaluation and Molecular Dynamic Studies. International Journal of Molecular Sciences, 2022, 23, 4827.	4.1	6