
Luiz Romeiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/324899/publications.pdf Version: 2024-02-01

LUIZ POMEIRO

#	Article	IF	CITATIONS
1	Phenolic Lipids Derived from Cashew Nut Shell Liquid to Treat Metabolic Diseases. Journal of Medicinal Chemistry, 2022, 65, 1961-1978.	2.9	6
2	Sustainable multifunctional phenolic lipids as potential therapeutics in Dentistry. Scientific Reports, 2022, 12, .	1.6	1
3	Discovery of sustainable drugs for Alzheimer's disease: cardanol-derived cholinesterase inhibitors with antioxidant and anti-amyloid properties. RSC Medicinal Chemistry, 2021, 12, 1154-1163.	1.7	11
4	Sustainable Drug Discovery of Multi-Target-Directed Ligands for Alzheimer's Disease. Journal of Medicinal Chemistry, 2021, 64, 4972-4990.	2.9	63
5	Cashew Nut Shell Liquid (CNSL) as a Source of Drugs for Alzheimer's Disease. Molecules, 2021, 26, 5441.	1.7	8
6	O Uso Próprio de Sementes Salvas e suas Relações com o Direito de Propriedade Intelectual dos Obtentores Vegetais Brasileiros. Cadernos De Prospecção, 2020, 13, 957.	0.0	1
7	Molecular modeling of cardanol-derived AChE inhibitors. Chemical Physics Letters, 2019, 731, 136591.	1.2	5
8	Revisiting the Pharmacodynamic Uroselectivity of <i>α</i> ₁ -Adrenergic Receptor Antagonists. Journal of Pharmacology and Experimental Therapeutics, 2019, 371, 106-112.	1.3	10
9	Discovery of Sustainable Drugs for Neglected Tropical Diseases: Cashew Nut Shell Liquid (CNSL)â€Based Hybrids Target Mitochondrial Function and ATP Production in <i>Trypanosoma brucei</i> . ChemMedChem, 2019, 14, 621-635.	1.6	21
10	Novel Sustainable-by-Design HDAC Inhibitors for the Treatment of Alzheimer's Disease. ACS Medicinal Chemistry Letters, 2019, 10, 671-676.	1.3	20
11	The α1-adrenoceptor-mediated human hyperplastic prostate cells proliferation is impaired by EGF receptor inhibition. Life Sciences, 2019, 239, 117048.	2.0	5
12	Molecular evaluation of anti-inflammatory activity of phenolic lipid extracted from cashew nut shell liquid (CNSL). BMC Complementary and Alternative Medicine, 2018, 18, 181.	3.7	20
13	The novel piperazine-containing compound LQFM018: Necroptosis cell death mechanisms, dopamine D4 receptor binding and toxicological assessment. Biomedicine and Pharmacotherapy, 2018, 102, 481-493.	2.5	12
14	Potential acetylcholinesterase inhibitors: molecular docking, molecular dynamics, and in silico prediction. Journal of Molecular Modeling, 2017, 23, 67.	0.8	24
15	Effect of piplartine and cinnamides on Leishmania amazonensis, Plasmodium falciparum and on peritoneal cells of Swiss mice. Pharmaceutical Biology, 2017, 55, 1601-1607.	1.3	16
16	ADME studies and preliminary safety pharmacology of LDT5, a lead compound for the treatment of benign prostatic hyperplasia. Brazilian Journal of Medical and Biological Research, 2016, 49, e5542.	0.7	3
17	Synthesis and structure–activity relationships of novel arylpiperazines as potent antagonists of α1-adrenoceptor. European Journal of Medicinal Chemistry, 2016, 122, 601-610.	2.6	4
18	Induction of apoptosis in Ehrlich ascites tumour cells via p53 activation by a novel small-molecule MDM2 inhibitor – LQFM030. Journal of Pharmacy and Pharmacology, 2016, 68, 1143-1159.	1.2	7

Luiz Romeiro

#	Article	IF	CITATIONS
19	Cardanol-derived AChE inhibitors: Towards the development of dual binding derivatives for Alzheimer's disease. European Journal of Medicinal Chemistry, 2016, 108, 687-700.	2.6	82
20	New Multi-target Antagonists of Â1A-, Â1D-Adrenoceptors and 5-HT1A Receptors Reduce Human Hyperplastic Prostate Cell Growth and the Increase of Intraurethral Pressure. Journal of Pharmacology and Experimental Therapeutics, 2015, 356, 212-222.	1.3	14
21	Characterization of cytotoxic activity of compounds derived from anacardic acid, cardanol and cardol in oral squamous cell carcinoma. BMC Proceedings, 2014, 8, .	1.8	4
22	Pharmacological characterization of N1-(2-methoxyphenyl)-N4-hexylpiperazine as a multi-target antagonist of α1A/α1D-adrenoceptors and 5-HT1A receptors that blocks prostate contraction and cell growth. Naunyn-Schmiedeberg's Archives of Pharmacology, 2014, 387, 225-234.	1.4	10
23	Acetylcholinesterase inhibitors: Modeling potential candidates. International Journal of Quantum Chemistry, 2013, 113, 1461-1466.	1.0	6
24	A chromophoric study of 2-ethylhexyl p-methoxycinnamate. Chemical Physics Letters, 2011, 516, 162-165.	1.2	13
25	Discovery of LASSBio-772, a 1,3-benzodioxole N-phenylpiperazine derivative with potent alpha 1A/D-Adrenergic receptor blocking properties. European Journal of Medicinal Chemistry, 2011, 46, 3000-3012.	2.6	32
26	Synthesis and cytotoxicity screening of substituted isobenzofuranones designed from anacardic acids. European Journal of Medicinal Chemistry, 2010, 45, 3480-3489.	2.6	46
27	New potential AChE inhibitor candidates. European Journal of Medicinal Chemistry, 2009, 44, 3754-3759.	2.6	46
28	Electronic structure calculations toward new potentially AChE inhibitors. Chemical Physics Letters, 2007, 446, 304-308.	1.2	14
29	Structure and enzyme properties ofZabrotes subfasciatus α-amylase. Archives of Insect Biochemistry and Physiology, 2006, 61, 77-86.	0.6	25
30	New Application of Triphosgene in a Convenient Synthesis of 3-Aryl-1,3-benzoxazine-2,4-diones from Anacardic Acids ChemInform, 2005, 36, no.	0.1	0
31	Synthesis and biological evaluation of new salicylate macrolactones from anacardic acids. Journal of the Brazilian Chemical Society, 2005, 16, 1217-1225.	0.6	20
32	New Application of Triphosgene in a Convenient Synthesis of 3-Aryl-1,3-benzoxazine-2,4-diones from Anacardic Acids. Heterocycles, 2005, 65, 311.	0.4	13
33	Novas estratégias terapêuticas para o tratamento da depressão: uma visão da quÃmica medicinal. Quimica Nova, 2003, 26, 347-358.	0.3	10
34	SÃntese de análogo de brassinoesteróide a partir de vespertilina. Quimica Nova, 1998, 21, 726-730.	0.3	4