Peter Bhlmann

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3248963/peter-buhlmann-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

126 48 155 15,993 h-index g-index citations papers 168 7.26 19,471 3.3 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
155	Distributional anchor regression <i>Statistics and Computing</i> , 2022 , 32, 39	1.8	O
154	Multiomic profiling of the liver across diets and age in a diverse mouse population. <i>Cell Systems</i> , 2021 ,	10.6	2
153	Change-Point Detection for Graphical Models in the Presence of Missing Values. <i>Journal of Computational and Graphical Statistics</i> , 2021 , 1-12	1.4	2
152	Stabilizing variable selection and regression. Annals of Applied Statistics, 2021, 15,	2.1	1
151	Anchor regression: Heterogeneous data meet causality. <i>Journal of the Royal Statistical Society Series B: Statistical Methodology</i> , 2021 , 83, 215-246	3.9	10
150	Seeded intervals and noise level estimation in change point detection: a discussion of Fryzlewicz (2020). <i>Journal of the Korean Statistical Society</i> , 2020 , 49, 1081-1089	0.5	O
149	Goodness-of-fit testing in high dimensional generalized linear models. <i>Journal of the Royal Statistical Society Series B: Statistical Methodology</i> , 2020 , 82, 773-795	3.9	8
148	Rejoinder on: Hierarchical inference for genome-wide association studies: a view on methodology with software. <i>Computational Statistics</i> , 2020 , 35, 59-67	1	
147	Hierarchical inference for genome-wide association studies: a view on methodology with software. <i>Computational Statistics</i> , 2020 , 35, 1-40	1	5
146	Invariance, Causality and Robustness. Statistical Science, 2020, 35,	2.4	10
145	Rejoinder: Invariance, Causality and Robustness. <i>Statistical Science</i> , 2020 , 35,	2.4	1
144	A Look at Robustness and Stability of \$ell_{1}\$-versus \$ell_{0}\$-Regularization: Discussion of Papers by Bertsimas et al. and Hastie et al <i>Statistical Science</i> , 2020 , 35,	2.4	4
143	Toward causality and improving external validity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 25963-25965	11.5	O
142	Deconfounding and Causal Regularisation for Stability and External Validity. <i>International Statistical Review</i> , 2020 , 88, S114	1.4	2
141	SPHN/PHRT: Forming a Swiss-Wide Infrastructure for Data-Driven Sepsis Research. <i>Studies in Health Technology and Informatics</i> , 2020 , 270, 1163-1167	0.5	O
140	Comments on: Data science, big data and statistics. <i>Test</i> , 2019 , 28, 330-333	1.1	1
139	Invariant Causal Prediction for Sequential Data. <i>Journal of the American Statistical Association</i> , 2019 , 114, 1264-1276	2.8	20

(2016-2019)

138	Causal Dantzig: Fast inference in linear structural equation models with hidden variables under additive interventions. <i>Annals of Statistics</i> , 2019 , 47,	3.2	7
137	Statistics for big data: A perspective. Statistics and Probability Letters, 2018, 136, 37-41	0.6	17
136	Goodness-of-fit tests for high dimensional linear models. <i>Journal of the Royal Statistical Society Series B: Statistical Methodology</i> , 2018 , 80, 113-135	3.9	21
135	Kernel-based tests for joint independence. <i>Journal of the Royal Statistical Society Series B: Statistical Methodology</i> , 2018 , 80, 5-31	3.9	50
134	Most Likely Transformations. Scandinavian Journal of Statistics, 2018, 45, 110-134	0.8	37
133	Causal inference in partially linear structural equation models. <i>Annals of Statistics</i> , 2018 , 46,	3.2	3
132	Nonparametric causal inference from observational time series through marginal integration. <i>Econometrics and Statistics</i> , 2017 , 2, 81-105	0.8	4
131	High-dimensional simultaneous inference with the bootstrap. <i>Test</i> , 2017 , 26, 685-719	1.1	37
130	Rejoinder on: High-dimensional simultaneous inference with the bootstrap. <i>Test</i> , 2017 , 26, 751-758	1.1	1
129	High-dimensional statistics, with applications to genome-wide association studies. <i>EMS Surveys in Mathematical Sciences</i> , 2017 , 4, 45-75	1.4	2
128	A multi-marker association method for genome-wide association studies without the need for population structure correction. <i>Nature Communications</i> , 2016 , 7, 13299	17.4	28
127	Comments on: A random forest guided tour. <i>Test</i> , 2016 , 25, 239-246	1.1	
126	A Sequential Rejection Testing Method for High-Dimensional Regression with Correlated Variables. <i>International Journal of Biostatistics</i> , 2016 , 12, 79-95	1.3	4
125	Assessing statistical significance in multivariable genome wide association analysis. <i>Bioinformatics</i> , 2016 , 32, 1990-2000	7.2	22
124	Hierarchical Testing in the High-Dimensional Setting With Correlated Variables. <i>Journal of the American Statistical Association</i> , 2016 , 111, 331-343	2.8	12
123	Arabidopsis GERANYLGERANYL DIPHOSPHATE SYNTHASE 11 is a hub isozyme required for the production of most photosynthesis-related isoprenoids. <i>New Phytologist</i> , 2016 , 209, 252-64	9.8	73
122	Some Themes in High-Dimensional Statistics. <i>Abel Symposia</i> , 2016 , 1-13	0.9	1
121	Magging: Maximin Aggregation for Inhomogeneous Large-Scale Data. <i>Proceedings of the IEEE</i> , 2016 , 104, 126-135	14.3	17

120	Partial Least Squares for Heterogeneous Data. <i>Springer Proceedings in Mathematics and Statistics</i> , 2016 , 3-15	0.2	0
119	Methods for causal inference from gene perturbation experiments and validation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 7361-8	11.5	48
118	Score-based causal learning in additive noise models. <i>Statistics</i> , 2016 , 50, 471-485	0.5	9
117	Causal inference by using invariant prediction: identification and confidence intervals. <i>Journal of the Royal Statistical Society Series B: Statistical Methodology</i> , 2016 , 78, 947-1012	3.9	125
116	Structural intervention distance for evaluating causal graphs. <i>Neural Computation</i> , 2015 , 27, 771-99	2.9	12
115	High-Dimensional Inference: Confidence Intervals, \$p\$-Values and R-Software hdi. <i>Statistical Science</i> , 2015 , 30,	2.4	84
114	Maximin effects in inhomogeneous large-scale data. <i>Annals of Statistics</i> , 2015 , 43,	3.2	20
113	High-dimensional inference in misspecified linear models. <i>Electronic Journal of Statistics</i> , 2015 , 9,	1.2	20
112	Jointly interventional and observational data: estimation of interventional Markov equivalence classes of directed acyclic graphs. <i>Journal of the Royal Statistical Society Series B: Statistical Methodology</i> , 2015 , 77, 291-318	3.9	26
111	Marginal integration for nonparametric causal inference. <i>Electronic Journal of Statistics</i> , 2015 , 9,	1.2	4
110	Confidence Intervals and Tests for High-Dimensional Models: A Compact Review. <i>Lecture Notes in Statistics</i> , 2015 , 21-34	2.9	
109	Statistical approach to protein quantification. <i>Molecular and Cellular Proteomics</i> , 2014 , 13, 666-77	7.6	23
108	Hypersurfaces and Their Singularities in Partial Correlation Testing. <i>Foundations of Computational Mathematics</i> , 2014 , 14, 1079-1116	2.7	3
107	Discussion: A significance test for the lasso□ <i>Annals of Statistics</i> , 2014 , 42,	3.2	6
106	Two optimal strategies for active learning of causal models from interventional data. <i>International Journal of Approximate Reasoning</i> , 2014 , 55, 926-939	3.6	12
105	GLMMLasso: An Algorithm for High-Dimensional Generalized Linear Mixed Models Using Il-Penalization. <i>Journal of Computational and Graphical Statistics</i> , 2014 , 23, 460-477	1.4	48
104	CAM: Causal additive models, high-dimensional order search and penalized regression. <i>Annals of Statistics</i> , 2014 , 42,	3.2	62
103	Discussion of Big Bayes Stories and BayesBag. <i>Statistical Science</i> , 2014 , 29,	2.4	1

102	Causal Structure Learning and Inference: A Selective Review. <i>Quality Technology and Quantitative Management</i> , 2014 , 11, 3-21	1.9	11
101	Discussion of "the evolution of boosting algorithms" and "extending statistical boosting". <i>Methods of Information in Medicine</i> , 2014 , 53, 436-45	1.5	15
100	High-Dimensional Statistics with a View Toward Applications in Biology. <i>Annual Review of Statistics and Its Application</i> , 2014 , 1, 255-278	7.6	115
99	On asymptotically optimal confidence regions and tests for high-dimensional models. <i>Annals of Statistics</i> , 2014 , 42,	3.2	385
98	Conditional transformation models. <i>Journal of the Royal Statistical Society Series B: Statistical Methodology</i> , 2014 , 76, 3-27	3.9	42
97	Identifiability of Gaussian structural equation models with equal error variances. <i>Biometrika</i> , 2014 , 101, 219-228	2	62
96	Simultaneous analysis of large-scale RNAi screens for pathogen entry. <i>BMC Genomics</i> , 2014 , 15, 1162	4.5	28
95	High-dimensional variable screening and bias in subsequent inference, with an empirical comparison. <i>Computational Statistics</i> , 2014 , 29, 407-430	1	35
94	Robust Statistics 2014 , 51-98		1
93	Causal statistical inference in high dimensions. <i>Mathematical Methods of Operations Research</i> , 2013 , 77, 357-370	1	13
93 92		1.6	13 37
	77, 357-370 Stable graphical model estimation with Random Forests for discrete, continuous, and mixed		
92	Stable graphical model estimation with Random Forests for discrete, continuous, and mixed variables. <i>Computational Statistics and Data Analysis</i> , 2013 , 64, 132-152 Correlated variables in regression: Clustering and sparse estimation. <i>Journal of Statistical Planning</i>	1.6	37
92 91	Stable graphical model estimation with Random Forests for discrete, continuous, and mixed variables. <i>Computational Statistics and Data Analysis</i> , 2013 , 64, 132-152 Correlated variables in regression: Clustering and sparse estimation. <i>Journal of Statistical Planning and Inference</i> , 2013 , 143, 1835-1858 Controlling false positive selections in high-dimensional regression and causal inference. <i>Statistical</i>	0.8	37 86
92 91 90	Stable graphical model estimation with Random Forests for discrete, continuous, and mixed variables. <i>Computational Statistics and Data Analysis</i> , 2013 , 64, 132-152 Correlated variables in regression: Clustering and sparse estimation. <i>Journal of Statistical Planning and Inference</i> , 2013 , 143, 1835-1858 Controlling false positive selections in high-dimensional regression and causal inference. <i>Statistical Methods in Medical Research</i> , 2013 , 22, 466-92 \$ell_{0}\$-penalized maximum likelihood for sparse directed acyclic graphs. <i>Annals of Statistics</i> , 2013	1.6 0.8 2.3	37 86 8
92 91 90 89	Stable graphical model estimation with Random Forests for discrete, continuous, and mixed variables. Computational Statistics and Data Analysis, 2013, 64, 132-152 Correlated variables in regression: Clustering and sparse estimation. Journal of Statistical Planning and Inference, 2013, 143, 1835-1858 Controlling false positive selections in high-dimensional regression and causal inference. Statistical Methods in Medical Research, 2013, 22, 466-92 \$ell_{0}\$-penalized maximum likelihood for sparse directed acyclic graphs. Annals of Statistics, 2013, 41,	1.6 0.8 2.3	37 86 8
92 91 90 89 88	Stable graphical model estimation with Random Forests for discrete, continuous, and mixed variables. <i>Computational Statistics and Data Analysis</i> , 2013 , 64, 132-152 Correlated variables in regression: Clustering and sparse estimation. <i>Journal of Statistical Planning and Inference</i> , 2013 , 143, 1835-1858 Controlling false positive selections in high-dimensional regression and causal inference. <i>Statistical Methods in Medical Research</i> , 2013 , 22, 466-92 \$ell_{0}\$-penalized maximum likelihood for sparse directed acyclic graphs. <i>Annals of Statistics</i> , 2013 , 41, Statistical significance in high-dimensional linear models. <i>Bernoulli</i> , 2013 , 19,	1.6 0.8 2.3 3.2	37 86 8 43 106

84	Systems-based analysis of Arabidopsis leaf growth reveals adaptation to water deficit. <i>Molecular Systems Biology</i> , 2012 , 8, 606	12.2	163
83	Bagging, Boosting and Ensemble Methods 2012 , 985-1022		83
82	Integrative genome-wide expression profiling identifies three distinct molecular subgroups of renal cell carcinoma with different patient outcome. <i>BMC Cancer</i> , 2012 , 12, 310	4.8	23
81	Causal stability ranking. <i>Bioinformatics</i> , 2012 , 28, 2819-23	7.2	38
80	Causal Inference Using Graphical Models with theRPackagepcalg. <i>Journal of Statistical Software</i> , 2012 , 47,	7.3	185
79	Selection of Carbonic Anhydrase IX Inhibitors from One Million DNA-Encoded Compounds. <i>ACS Chemical Biology</i> , 2011 , 6, 336-44	4.9	117
78	Statistics for High-Dimensional Data. Springer Series in Statistics, 2011,	0.3	853
77	The adaptive and the thresholded Lasso for potentially misspecified models (and a lower bound for the Lasso). <i>Electronic Journal of Statistics</i> , 2011 , 5,	1.2	52
76	Asymptotic optimality of the WestfallYoung permutation procedure for multiple testing under dependence. <i>Annals of Statistics</i> , 2011 , 39,	3.2	32
75	Estimation for High-Dimensional Linear Mixed-Effects Models Using 🗓-Penalization. <i>Scandinavian Journal of Statistics</i> , 2011 , 38, 197-214	0.8	97
74	Predicting causal effects in large-scale systems from observational data. <i>Nature Methods</i> , 2010 , 7, 247-	821.6	136
73	Stability selection. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2010 , 72, 417	7- <u>4</u> .7 ₅ 3	1221
72	Protein and gene model inference based on statistical modeling in k-partite graphs. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 12101-6	11.5	33
71	Mining tissue microarray data to uncover combinations of biomarker expression patterns that improve intermediate staging and grading of clear cell renal cell cancer. <i>Clinical Cancer Research</i> , 2010 , 16, 88-98	12.9	70
70	Variable selection in high-dimensional linear models: partially faithful distributions and the PC-simple algorithm. <i>Biometrika</i> , 2010 , 97, 261-278	2	49
69	Remembrance of Leo Breiman. Annals of Applied Statistics, 2010, 4,	2.1	2
68	🗓-penalization for mixture regression models. <i>Test</i> , 2010 , 19, 209-256	1.1	143
67	Rejoinder: 🗹 -penalization for mixture regression models. <i>Test</i> , 2010 , 19, 280-285	1.1	5

66	Twin Boosting: improved feature selection and prediction. <i>Statistics and Computing</i> , 2010 , 20, 119-138	1.8	40
65	Understanding human functioning using graphical models. <i>BMC Medical Research Methodology</i> , 2010 , 10, 14	4.7	31
64	Decomposition and model selection for large contingency tables. <i>Biometrical Journal</i> , 2010 , 52, 233-52	1.5	9
63	Boosting. Wiley Interdisciplinary Reviews: Computational Statistics, 2010 , 2, 69-74	1.4	8
62	Splines for financial volatility. <i>Journal of the Royal Statistical Society Series B: Statistical Methodology</i> , 2009 , 71, 655-670	3.9	14
61	Discovery of TNF inhibitors from a DNA-encoded chemical library based on diels-alder cycloaddition. <i>Chemistry and Biology</i> , 2009 , 16, 1075-86		89
60	p-Values for High-Dimensional Regression. <i>Journal of the American Statistical Association</i> , 2009 , 104, 1671-1681	2.8	205
59	Estimating high-dimensional intervention effects from observational data. <i>Annals of Statistics</i> , 2009 , 37,	3.2	142
58	On the conditions used to prove oracle results for the Lasso. <i>Electronic Journal of Statistics</i> , 2009 , 3,	1.2	290
57	High-dimensional additive modeling. <i>Annals of Statistics</i> , 2009 , 37,	3.2	219
57 56	High-dimensional additive modeling. <i>Annals of Statistics</i> , 2009 , 37, High dimensional sparse covariance estimation via directed acyclic graphs. <i>Electronic Journal of Statistics</i> , 2009 , 3,	3.2	219
	High dimensional sparse covariance estimation via directed acyclic graphs. <i>Electronic Journal of</i>		
56	High dimensional sparse covariance estimation via directed acyclic graphs. <i>Electronic Journal of Statistics</i> , 2009 , 3, The group lasso for logistic regression. <i>Journal of the Royal Statistical Society Series B: Statistical</i>	1.2	14
56 55	High dimensional sparse covariance estimation via directed acyclic graphs. <i>Electronic Journal of Statistics</i> , 2009 , 3, The group lasso for logistic regression. <i>Journal of the Royal Statistical Society Series B: Statistical Methodology</i> , 2008 , 70, 53-71 Annotating novel genes by integrating synthetic lethals and genomic information. <i>BMC Systems</i>	3.9	14 813
56 55 54	High dimensional sparse covariance estimation via directed acyclic graphs. <i>Electronic Journal of Statistics</i> , 2009 , 3, The group lasso for logistic regression. <i>Journal of the Royal Statistical Society Series B: Statistical Methodology</i> , 2008 , 70, 53-71 Annotating novel genes by integrating synthetic lethals and genomic information. <i>BMC Systems Biology</i> , 2008 , 2, 3 Targeted quantitative analysis of Streptococcus pyogenes virulence factors by multiple reaction	3.9 3.5	14 813 6
56 55 54 53	High dimensional sparse covariance estimation via directed acyclic graphs. <i>Electronic Journal of Statistics</i> , 2009 , 3, The group lasso for logistic regression. <i>Journal of the Royal Statistical Society Series B: Statistical Methodology</i> , 2008 , 70, 53-71 Annotating novel genes by integrating synthetic lethals and genomic information. <i>BMC Systems Biology</i> , 2008 , 2, 3 Targeted quantitative analysis of Streptococcus pyogenes virulence factors by multiple reaction monitoring. <i>Molecular and Cellular Proteomics</i> , 2008 , 7, 1489-500 Discussion: One-step sparse estimates in nonconcave penalized likelihood models. <i>Annals of</i>	1.2 3.9 3.5 7.6	14 813 6 179
5655545352	High dimensional sparse covariance estimation via directed acyclic graphs. <i>Electronic Journal of Statistics</i> , 2009 , 3, The group lasso for logistic regression. <i>Journal of the Royal Statistical Society Series B: Statistical Methodology</i> , 2008 , 70, 53-71 Annotating novel genes by integrating synthetic lethals and genomic information. <i>BMC Systems Biology</i> , 2008 , 2, 3 Targeted quantitative analysis of Streptococcus pyogenes virulence factors by multiple reaction monitoring. <i>Molecular and Cellular Proteomics</i> , 2008 , 7, 1489-500 Discussion: One-step sparse estimates in nonconcave penalized likelihood models. <i>Annals of Statistics</i> , 2008 , 36,	1.2 3.9 3.5 7.6 3.2	14 813 6 179 30

48	Smoothing 1 -penalized estimators for high-dimensional time-course data. <i>Electronic Journal of Statistics</i> , 2007 , 1,	1.2	14
47	EVE (external variance estimation) increases statistical power for detecting differentially expressed genes. <i>Plant Journal</i> , 2007 , 52, 561-9	6.9	5
46	Penalized likelihood for sparse contingency tables with an application to full-length cDNA libraries. <i>BMC Bioinformatics</i> , 2007 , 8, 476	3.6	16
45	Statistical Analysis of Quantum Chemical Data Using Generalized XML/CML Archives for the Derivation of Molecular Design Rules. <i>Chimia</i> , 2007 , 61, 165-168	1.3	4
44	Analyzing gene expression data in terms of gene sets: methodological issues. <i>Bioinformatics</i> , 2007 , 23, 980-7	7.2	573
43	Boosting Algorithms: Regularization, Prediction and Model Fitting. Statistical Science, 2007, 22, 477	2.4	484
42	Network analysis of systems elements. Exs, 2007, 97, 331-51		4
41	Conjugate Direction Boosting. <i>Journal of Computational and Graphical Statistics</i> , 2006 , 15, 287-311	1.4	5
40	Model-based boosting in high dimensions. <i>Bioinformatics</i> , 2006 , 22, 2828-9	7.2	38
39	A systematic comparison and evaluation of biclustering methods for gene expression data. <i>Bioinformatics</i> , 2006 , 22, 1122-9	7.2	626
38	Low-order conditional independence graphs for inferring genetic networks. <i>Statistical Applications in Genetics and Molecular Biology</i> , 2006 , 5, Article1	1.2	63
37	Survival ensembles. <i>Biostatistics</i> , 2006 , 7, 355-73	3.7	403
36	Boosting for high-dimensional linear models. <i>Annals of Statistics</i> , 2006 , 34, 559	3.2	216
35	High-dimensional graphs and variable selection with the Lasso. <i>Annals of Statistics</i> , 2006 , 34, 1436	3.2	1622
34	Boosting and 🛭-Penalty Methods for High-dimensional Data with Some Applications in Genomics 2006 , 1-12		
33	Boosting Algorithms: with an Application to Bootstrapping Multivariate Time Series 2006 , 209-230		1
32	Lower bounds for the number of false null hypotheses for multiple testing of associations under general dependence structures. <i>Biometrika</i> , 2005 , 92, 893-907	2	26
31	Variable Length Markov Chains: Methodology, Computing, and Software. <i>Journal of Computational and Graphical Statistics</i> , 2004 , 13, 435-455	1.4	34

(1999-2004)

30	Gene expression signatures identify rhabdomyosarcoma subtypes and detect a novel t(2;2)(q35;p23) translocation fusing PAX3 to NCOA1. <i>Cancer Research</i> , 2004 , 64, 5539-45	10.1	196
29	Finding predictive gene groups from microarray data. <i>Journal of Multivariate Analysis</i> , 2004 , 90, 106-13 ⁻²	1 1.4	80
28	Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana. <i>Genome Biology</i> , 2004 , 5, R92	18.3	229
27	Bagging, Subagging and Bragging for Improving some Prediction Algorithms 2003, 19-34		25
26	Boosting With the L2 Loss. Journal of the American Statistical Association, 2003, 98, 324-339	2.8	485
25	Boosting for tumor classification with gene expression data. <i>Bioinformatics</i> , 2003 , 19, 1061-9	7.2	282
24	Volatility estimation with functional gradient descent for very high-dimensional financial time series. <i>Journal of Computational Finance</i> , 2003 , 6, 65-89	1.7	25
23	An algorithm for nonparametric GARCH modelling. <i>Computational Statistics and Data Analysis</i> , 2002 , 40, 665-683	1.6	44
22	Weak dependence beyond mixing and asymptotics for nonparametric regression. <i>Annals of Statistics</i> , 2002 , 30, 397	3.2	38
21	Sieve Bootstrap With Variable-Length Markov Chains for Stationary Categorical Time Series. Journal of the American Statistical Association, 2002 , 97, 443-471	2.8	12
20	Bootstraps for Time Series. <i>Statistical Science</i> , 2002 , 17, 52	2.4	161
19	Analyzing bagging. <i>Annals of Statistics</i> , 2002 , 30, 927	3.2	383
18	Tree-structured generalized autoregressive conditional heteroscedastic models. <i>Journal of the Royal Statistical Society Series B: Statistical Methodology</i> , 2001 , 63, 727-744	3.9	29
17	Model Selection for Variable Length Markov Chains and Tuning the Context Algorithm. <i>Annals of the Institute of Statistical Mathematics</i> , 2000 , 52, 287-315	1	22
16	Dynamic adaptive partitioning for nonlinear time series. <i>Biometrika</i> , 1999 , 86, 555-571	2	25
15	Efficient and adaptive post-model-selection estimators. <i>Journal of Statistical Planning and Inference</i> , 1999 , 79, 1-9	0.8	8
14	Block length selection in the bootstrap for time series. <i>Computational Statistics and Data Analysis</i> , 1999 , 31, 295-310	1.6	77
13	Variable length Markov chains. <i>Annals of Statistics</i> , 1999 , 27, 480	3.2	196

12	Prediction of Spatial Cumulative Distribution Functions Using Subsampling: Comment. <i>Journal of the American Statistical Association</i> , 1999 , 94, 97	2.8	2
11	A New Mixing Notion and Functional Central Limit Theorems for a Sieve Bootstrap in Time Series. <i>Bernoulli</i> , 1999 , 5, 413	1.6	47
10	Extreme events from the return-volume process: a discretization approach for complexity reduction. <i>Applied Financial Economics</i> , 1998 , 8, 267-278		11
9	Sieve bootstrap for smoothing in nonstationary time series. <i>Annals of Statistics</i> , 1998 , 26, 48	3.2	46
8	Sieve Bootstrap for Time Series. <i>Bernoulli</i> , 1997 , 3, 123	1.6	255
7	Closure of Linear Processes. <i>Journal of Theoretical Probability</i> , 1997 , 10, 445-479	0.5	18
6	What is a linear process?. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1996 , 93, 12128-31	11.5	21
5	LOCALLY ADAPTIVE LAG-WINDOW SPECTRAL ESTIMATION. <i>Journal of Time Series Analysis</i> , 1996 , 17, 247-270	0.8	37
4	Moving-average representation of autoregressive approximations. <i>Stochastic Processes and Their Applications</i> , 1995 , 60, 331-342	1.1	26
3	The blockwise bootstrap for general empirical processes of stationary sequences. <i>Stochastic Processes and Their Applications</i> , 1995 , 58, 247-265	1.1	19
2	Blockwise Bootstrapped Empirical Process for Stationary Sequences. <i>Annals of Statistics</i> , 1994 , 22, 995	3.2	59
1	Multi-Omic Profiling of the Liver Across Diets and Age in a Diverse Mouse Population		3