Lin Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3248428/publications.pdf

Version: 2024-02-01

394421 345221 1,609 35 19 36 h-index citations g-index papers 37 37 37 2514 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Mitochondrial Redox Signaling in O ₂ -Sensing Chemoreceptor Cells. Antioxidants and Redox Signaling, 2022, 37, 274-289.	5.4	9
2	Reduced expression of mitochondrial complex I subunit Ndufs2 does not impact healthspan in mice. Scientific Reports, 2022, 12, 5196.	3.3	10
3	Using redox-sensitive fluorescent probes to record real-time reactive oxygen species production in cells from mouse carotid body slices. STAR Protocols, 2021, 2, 100535.	1.2	8
4	Lactate sensing mechanisms in arterial chemoreceptor cells. Nature Communications, 2021, 12, 4166.	12.8	38
5	Disruption of mitochondrial complex I induces progressive parkinsonism. Nature, 2021, 599, 650-656.	27.8	247
6	Molecular Mechanisms of Acute Oxygen Sensing by Arterial Chemoreceptor Cells. Role of Hif2α. Frontiers in Physiology, 2020, 11, 614893.	2.8	6
7	Differential biomarker profiles between unprovoked venous thromboembolism and cancer. Annals of Medicine, 2020, 52, 310-320.	3.8	7
8	Acute O $<$ sub $>$ 2 $<$ /sub $>$ sensing through HIF2Î \pm -dependent expression of atypical cytochrome oxidase subunits in arterial chemoreceptors. Science Signaling, 2020, 13, .	3.6	60
9	Acute oxygen sensingâ€"Role of metabolic specifications in peripheral chemoreceptor cells. Respiratory Physiology and Neurobiology, 2019, 265, 100-111.	1.6	15
10	Testing Acute Oxygen Sensing in Genetically Modified Mice: Plethysmography and Amperometry. Methods in Molecular Biology, 2018, 1742, 139-153.	0.9	14
11	Acute O2 Sensing: Role of Coenzyme QH2/Q Ratio and Mitochondrial ROS Compartmentalization. Cell Metabolism, 2018, 28, 145-158.e4.	16.2	75
12	Redox signaling in acute oxygen sensing. Redox Biology, 2017, 12, 908-915.	9.0	35
13	Gene expression analyses reveal metabolic specifications in acute O ₂ â€sensing chemoreceptor cells. Journal of Physiology, 2017, 595, 6091-6120.	2.9	49
14	Impact of sample processing on the measurement of circulating microparticles: storage and centrifugation parameters. Clinical Chemistry and Laboratory Medicine, 2016, 54, 1759-1767.	2.3	16
15	Oxygen sensing by the carotid body: mechanisms and role in adaptation to hypoxia. American Journal of Physiology - Cell Physiology, 2016, 310, C629-C642.	4.6	99
16	Oxygen-sensing by arterial chemoreceptors: Mechanisms and medical translation. Molecular Aspects of Medicine, 2016, 47-48, 90-108.	6.4	50
17	Oxygen Sensing by Arterial Chemoreceptors Depends on Mitochondrial Complex I Signaling. Cell Metabolism, 2015, 22, 825-837.	16.2	180
18	High correlation between 2 flow cytometry platforms in the microparticles analysis using a new calibrated beads strategy. Translational Research, 2015, 166, 733-739.	5.0	6

#	Article	IF	Citations
19	Glucose sensing by carotid body glomus cells: potential implications in disease. Frontiers in Physiology, 2014, 5, 398.	2.8	34
20	Age-Mediated Transcriptomic Changes in Adult Mouse Substantia Nigra. PLoS ONE, 2013, 8, e62456.	2.5	15
21	<i>PSMC1</i> Gene in Parkinson's Disease. European Neurology, 2012, 68, 193-198.	1.4	4
22	Intermediate alleles at the FRAXA and FRAXE loci in Parkinson's disease. Parkinsonism and Related Disorders, 2011, 17, 281-284.	2.2	16
23	Heat shock protein 70 kDa over-expression and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced nigrostriatal degeneration in mice. Neuroscience, 2011, 193, 323-329.	2.3	4
24	Mesencephalic and striatal protein profiles in mice over-expressing glucose-6-phosphate dehydrogenase in dopaminergic neurons. Journal of Proteomics, 2010, 73, 1747-1757.	2.4	5
25	Brain-derived neurotrophic factor G196A polymorphism and clinical features in Parkinson's disease. Acta Neurologica Scandinavica, 2010, 122, 41-45.	2.1	37
26	Prevalence and clinical features ofLRRK2mutations in patients with Parkinson's disease in southern Spain. European Journal of Neurology, 2009, 16, 957-960.	3.3	32
27	Glucose-6-phosphate dehydrogenase activity in Parkinson's disease. Journal of Neurology, 2008, 255, 1850-1851.	3.6	8
28	Neuroprotection by Transgenic Expression of Glucose-6-Phosphate Dehydrogenase in Dopaminergic Nigrostriatal Neurons of Mice. Journal of Neuroscience, 2006, 26, 4500-4508.	3.6	62
29	Leaky termination at premature stop codons antagonizes nonsense-mediated mRNA decay in S. cerevisiae. Rna, 2004, 10, 691-703.	3.5	153
30	Induction of the glucose-6-phosphate dehydrogenase gene expression by chronic hypoxia in PC12 cells. FEBS Letters, 2004, 569, 256-260.	2.8	56
31	Chlorzoxazone or 1-EBIO increases Na ⁺ absorption across cystic fibrosis airway epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 281, L1123-L1129.	2.9	23
32	Synthetic chloride channel restores glutathione secretion in cystic fibrosis airway epithelia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 281, L24-L30.	2.9	47
33	Abnormal glutathione transport in cystic fibrosis airway epithelia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 277, L113-L118.	2.9	124
34	î ³ -Glutamylcysteine synthetase: mRNA stabilization and independent subunit transcription by 4-hydroxy-2-nonenal. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1998, 275, L861-L869.	2.9	53
35	Ca ²⁺ -dependent p47 ^{phox} translocation in hydroperoxide modulation of the alveolar macrophage respiratory burst. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1997, 273, L1042-L1047.	2.9	11