Ping Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3248008/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Can Thiourea Dioxide Regenerate Keratin from Waste Wool?. Journal of Natural Fibers, 2022, 19, 5991-5999.	1.7	3
2	Enhancing surface performance of wool using reduced ionic liquid. Journal of the Textile Institute, 2022, 113, 983-992.	1.0	1
3	Enhancing dye adsorption of wool by controlled and facile surface modification using sodium bisulphite. Coloration Technology, 2022, 138, 82-89.	0.7	3
4	Structure and Performance of Cuticles Isolated from Wool Fibers Using Different Approaches. Journal of Natural Fibers, 2022, 19, 7714-7727.	1.7	1
5	Thiol-Based Ionic Liquid: An Efficient Approach for Improving Hydrophilic Performance of Wool. Journal of Natural Fibers, 2022, 19, 9729-9740.	1.7	3
6	Thiourea dioxide-mediated surface functionalization: A novel strategy for anti-felting and dyeability improvement of wool. Journal of the Textile Institute, 2022, 113, 2491-2501.	1.0	3
7	Phase-transited lysozyme with secondary reactivity for moisture-permeable antibacterial wool fabric. Chemical Engineering Journal, 2022, 432, 134198.	6.6	12
8	Construction of a Rapid Photothermal Antibacterial Silk Fabric via QCS-Guided <i>In Situ</i> Deposition of CuSNPs. ACS Sustainable Chemistry and Engineering, 2022, 10, 2192-2203.	3.2	26
9	Fabrication of stretchable PEDOT:PSS coated cotton fabric via LBL electrostatic self-assembly and its UV protection and sensing properties. Cellulose, 2022, 29, 2699-2709.	2.4	11
10	pH Mediated L-cysteine Aqueous Solution for Wool Reduction and Urea-Free Keratin Extraction. Journal of Polymers and the Environment, 2022, 30, 2714-2726.	2.4	4
11	Sensitive Micro-Breathing Sensing and Highly-Effective Photothermal Antibacterial <i>Cinnamomum camphora</i> Bark Micro-Structural Cotton Fabric via Electrostatic Self-Assembly of MXene/HACC. ACS Applied Materials & Interfaces, 2022, 14, 2132-2145.	4.0	24
12	Enzymatic construction of a temperature-regulating fabric with multiple heat-transfer capabilities. Cellulose, 2022, 29, 3513-3528.	2.4	5
13	Enzymatic synthesis of sodium alginateâ€gâ€poly (acrylic acid) grafting copolymers as a novel printing thickener. Coloration Technology, 2022, 138, 278-290.	0.7	1
14	Combined Cutinase and Keratinolytic Enzyme to Endow Improved Shrink-resistance to Wool Fabric. Fibers and Polymers, 2022, 23, 985-992.	1.1	7
15	Green preparation of PEDOT-based composites with outstanding electrothermal heating and durable rapid-response sensing performance for smart healthcare textiles. Chemical Engineering Journal, 2022, 446, 137189.	6.6	14
16	Orderly Self-Stacking a High-Stability coating of MXene@Polydopamine hybrid onto textiles for multifunctional personal thermal management. Composites Part A: Applied Science and Manufacturing, 2022, 160, 107038.	3.8	16
17	An innovative, low-cost and environment-friendly approach by using a deep eutectic solvent as the water substitute to minimize waste in the textile industry and for better clothing performance. Green Chemistry, 2022, 24, 5904-5917.	4.6	11
18	Construction of multifunctional UV-resistant, antibacterial and photothermal cotton fabric via silver/melanin-like nanoparticles. Cellulose, 2022, 29, 7477-7494.	2.4	12

#	Article	IF	CITATIONS
19	Fabrication of hygroscopic photothermal fibroin-based aerogels for dehumidification and solar-driven water harvesting. Materials Today Communications, 2022, 32, 103984.	0.9	2
20	Customizable bio-based coating of phase-transited lysozyme-COS for durable antibacterial and moisture management on wool fabric. International Journal of Biological Macromolecules, 2022, 217, 552-561.	3.6	6
21	Antibacterial Functionalization of Silk Fabrics following in Situ Coloring with Diazo Salts. Journal of Natural Fibers, 2021, 18, 1809-1822.	1.7	1
22	Chitosan grafting via one-enzyme double catalysis: An effective approach for improving performance of wool. Carbohydrate Polymers, 2021, 252, 117157.	5.1	20
23	Thermo-responsive cotton fabric prepared by enzyme-initiated "graft from―polymerization for moisture/thermal management. Cellulose, 2021, 28, 1795-1808.	2.4	9
24	Conjugation of CMCS to silk fibroin for tuning mechanical and swelling behaviors of fibroin hydrogels. European Polymer Journal, 2021, 150, 110411.	2.6	13
25	A Sustainable and Effective Bioprocessing Approach for Improving Anti-felting, Anti-pilling and Dyeing Properties of Wool Fabric. Fibers and Polymers, 2021, 22, 3045-3054.	1.1	16
26	A facile strategy to construct flexible and conductive silk fibroin aerogel for pressure sensors using bifunctional PEG. European Polymer Journal, 2021, 153, 110513.	2.6	13
27	Rapid Antibacterial Effects of Silk Fabric Constructed through Enzymatic Grafting of Modified PEI and AgNP Deposition. ACS Applied Materials & Interfaces, 2021, 13, 33505-33515.	4.0	30
28	Developing a Multifunctional Silk Fabric with Dual-Driven Heating and Rapid Photothermal Antibacterial Abilities Using High-Yield MXene Dispersions. ACS Applied Materials & Interfaces, 2021, 13, 43414-43425.	4.0	45
29	A facile strategy for the preparation of photothermal silk fibroin aerogels with antibacterial and oil-water separation abilities. Journal of Colloid and Interface Science, 2021, 603, 518-529.	5.0	34
30	Preparation of <scp>PEG</scp> â€modified wool keratin/sodium alginate porous scaffolds with elasticity recovery and good biocompatibility. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 1303-1312.	1.6	4
31	Efficient Regulation of the Behaviors of Silk Fibroin Hydrogel via Enzyme-Catalyzed Coupling of Hyaluronic Acid. Langmuir, 2021, 37, 478-489.	1.6	14
32	Photoenzymatic Activity of Artificial–Natural Bienzyme Applied in Biodegradation of Methylene Blue and Accelerating Polymerization of Dopamine. ACS Applied Materials & Interfaces, 2021, 13, 56191-56204.	4.0	9
33	Thiolâ€ene photoclick reaction: An ecoâ€friendly and facile approach for preparation of MPEGâ€gâ€keratin biomaterial. Engineering in Life Sciences, 2020, 20, 17-25.	2.0	17
34	Graft modification of lignin-based cellulose via enzyme-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization and free-radical coupling. International Journal of Biological Macromolecules, 2020, 144, 267-278.	3.6	12
35	Enzymatic crosslinking of silk sericin through combined use of TGase and the custom peptide. Journal of the Textile Institute, 2020, 111, 84-92.	1.0	6
36	Green modification of cellulose-based natural materials by HRP-initiated controlled "graft from― polymerization. International Journal of Biological Macromolecules, 2020, 164, 1237-1245.	3.6	21

#	Article	IF	CITATIONS
37	Bio-Inspired Coloring and Functionalization of Silk Fabric via Laccase-Catalyzed Graft Polymerization of Arylamines. Fibers and Polymers, 2020, 21, 1927-1937.	1.1	7
38	Development of an eco-friendly antibacterial textile: lysozyme immobilization on wool fabric. Bioprocess and Biosystems Engineering, 2020, 43, 1639-1648.	1.7	15
39	Laccase-mediated construction of flexible double-network hydrogels based on silk fibroin and tyramine-modified hyaluronic acid. International Journal of Biological Macromolecules, 2020, 160, 795-805.	3.6	38
40	Construction of a composite hydrogel of silk sericin via horseradish peroxidase atalyzed graft polymerization of polyâ€PEGDMA. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 2643-2655.	1.6	9
41	A Facile and Controllable Approach for Surface Modification of Wool by Micro-dissolution. Fibers and Polymers, 2020, 21, 1229-1237.	1.1	12
42	Exploring the role of pullulan in the process of potato starch film formation. Carbohydrate Polymers, 2020, 234, 115910.	5.1	9
43	Enzymatic deposition of PPy onto cPEG-grafted silk fibroin membrane to achieve conductivity. New Journal of Chemistry, 2020, 44, 7042-7050.	1.4	5
44	Enzymatic Thiol–Ene Click Reaction: An Eco-Friendly Approach for MPEGMA-Grafted Modification of Wool Fibers. ACS Sustainable Chemistry and Engineering, 2019, 7, 13446-13455.	3.2	25
45	"Graft to―Modification of Lignin by the Combination of Enzyme-Initiated Reversible Addition–Fragmentation Chain Transfer and Grafting. ACS Sustainable Chemistry and Engineering, 2019, 7, 12973-12980.	3.2	12
46	Phosphorylation of Silk Fibroin via Maillard Reaction and Its Behavior of Biomimetic Mineralization. Fibers and Polymers, 2019, 20, 1616-1623.	1.1	3
47	Biomimetic mineralization behavior of COS-grafted silk fibroin following hexokinase-mediated phosphorylation. International Journal of Biological Macromolecules, 2019, 131, 241-252.	3.6	9
48	Eco-friendly Grafting of Chitosan as a Biopolymer onto Wool Fabrics Using Horseradish Peroxidase. Fibers and Polymers, 2019, 20, 261-270.	1.1	32
49	Controlled graft polymerization on the surface of filter paper via enzyme-initiated RAFT polymerization. Carbohydrate Polymers, 2019, 207, 239-245.	5.1	20
50	Disulfide bond reconstruction: A novel approach for grafting of thiolated chitosan onto wool. Carbohydrate Polymers, 2019, 203, 369-377.	5.1	70
51	An ecofriendly phosphorylation of wool using Maillard reaction for improving cationic dye absorption. Journal of Cleaner Production, 2018, 178, 611-617.	4.6	15
52	Fabrication of tough poly(ethylene glycol)/collagen double network hydrogels for tissue engineering. Journal of Biomedical Materials Research - Part A, 2018, 106, 192-200.	2.1	24
53	Improving properties of silk sericin membranes via enzymatic oxidation with laccase and TEMPO. Biotechnology and Applied Biochemistry, 2018, 65, 372-380.	1.4	15
54	Preparation of a multifunctional fibroin-based biomaterial via laccase-assisted grafting of chitooligosaccharide. International Journal of Biological Macromolecules, 2018, 113, 1062-1072.	3.6	37

#	Article	IF	CITATIONS
55	HRP-mediated graft polymerization of acrylic acid onto silk fibroins and in situ biomimetic mineralization. Journal of Materials Science: Materials in Medicine, 2018, 29, 72.	1.7	8
56	Preparation of a bio-composite of sericin-g-PMMA via HRP-mediated graft copolymerization. International Journal of Biological Macromolecules, 2018, 117, 323-330.	3.6	17
57	A novel "trifunctional protease―with reducibility, hydrolysis, and localization used for wool anti-felting treatment. Applied Microbiology and Biotechnology, 2018, 102, 9159-9170.	1.7	25
58	Dissolution and regeneration of wool keratin in the deep eutectic solvent of choline chloride-urea. International Journal of Biological Macromolecules, 2018, 119, 423-430.	3.6	55
59	Highly efficient and eco-friendly wool degradation by L-cysteine-assisted esperase. Journal of Cleaner Production, 2018, 192, 433-442.	4.6	54
60	Mechanism and Analysis of Laccase-mediated Coloration of Silk Fabrics. Fibers and Polymers, 2018, 19, 868-876.	1.1	19
61	High strength and anti-fatigue nanocomposite hydrogels prepared via self-initiated free radical polymerization triggered by daylight. New Journal of Chemistry, 2018, 42, 11796-11803.	1.4	15
62	Facilitation of α-polylysine in TGase-mediated crosslinking modification for gluten and its effect on properties of gluten films. Journal of Cereal Science, 2017, 73, 108-115.	1.8	16
63	Self-Crosslinking of Silk Fibroin Using H2O2-Horseradish Peroxidase System and the Characteristics of the Resulting Fibroin Membranes. Applied Biochemistry and Biotechnology, 2017, 182, 1548-1563.	1.4	27
64	Laccase-mediated in situ oxidation of dopa for bio-inspired coloration of silk fabric. RSC Advances, 2017, 7, 12977-12983.	1.7	27
65	Hydrophobic functionalization of jute fabrics by enzymatic-assisted grafting of vinyl copolymers. New Journal of Chemistry, 2017, 41, 3773-3780.	1.4	18
66	Enhancement reactivity of <i>Bombyx mori</i> silk fibroins via genipin-mediated grafting of a tyrosine-rich polypeptide. Journal of the Textile Institute, 2017, 108, 2115-2122.	1.0	9
67	Synthesis of silk fibroin-g-PAA composite using H2O2-HRP and characterization of the in situ biomimetic mineralization behavior. Materials Science and Engineering C, 2017, 81, 291-302.	3.8	27
68	Enhancement biocompatibility of bacterial cellulose membrane via laccase/TEMPO mediated grafting of silk fibroins. Fibers and Polymers, 2017, 18, 1478-1485.	1.1	8
69	A novel strategy to improve the dyeing properties in laccaseâ€mediated coloration of wool fabric. Coloration Technology, 2017, 133, 65-72.	0.7	16
70	A novel approach for grafting of β-cyclodextrin onto wool via laccase/TEMPO oxidation. Carbohydrate Polymers, 2016, 153, 463-470.	5.1	26
71	Grafting of tyrosine-containing peptide onto silk fibroin membrane for improving enzymatic reactivity. Fibers and Polymers, 2016, 17, 1323-1329.	1.1	15
72	<i>In situ</i> supramolecular hydrogel based on hyaluronic acid and dextran derivatives as cell scaffold. Journal of Biomedical Materials Research - Part A, 2016, 104, 2263-2270.	2.1	21

#	Article	IF	CITATIONS
73	Preparation of antibacterial silk fibroin membranes via tyrosinaseâ€catalyzed coupling of εâ€polylysine. Biotechnology and Applied Biochemistry, 2016, 63, 163-169.	1.4	11
74	Tyrosinase-Mediated Construction of a Silk Fibroin/Elastin Nanofiber Bioscaffold. Applied Biochemistry and Biotechnology, 2016, 178, 1363-1376.	1.4	30
75	Hydrophobic modification of cotton fabric with octadecylamine via laccase/TEMPO mediated grafting. Carbohydrate Polymers, 2016, 137, 549-555.	5.1	56
76	Enhancement of antioxidant ability of Bombyx mori silk fibroins by enzymatic coupling of catechin. Applied Microbiology and Biotechnology, 2016, 100, 1713-1722.	1.7	11
77	Enzymatic processing of protein-based fibers. Applied Microbiology and Biotechnology, 2015, 99, 10387-10397.	1.7	37
78	Covalent Immobilization of Catalase onto Regenerated Silk Fibroins via Tyrosinase-Catalyzed Cross-Linking. Applied Biochemistry and Biotechnology, 2015, 177, 472-485.	1.4	25
79	Properties of alginate fiber spun-dyed with fluorescent pigment dispersion. Carbohydrate Polymers, 2015, 118, 143-149.	5.1	28
80	Enzymatic grafting of lactoferrin onto silk fibroins for antibacterial functionalization. Fibers and Polymers, 2014, 15, 2045-2050.	1.1	19
81	Modification of <i><scp>B</scp>ombyx mori</i> silk fabrics by tyrosinaseâ€catalyzed grafting of chitosan. Engineering in Life Sciences, 2014, 14, 211-217.	2.0	29
82	Laccase-Catalyzed Oxidative Polymerization of Phenolic Compounds. Applied Biochemistry and Biotechnology, 2013, 171, 1673-1680.	1.4	106
83	Bioâ€antifelting of wool based on mild methanolic potassium hydroxide pretreatment. Engineering in Life Sciences, 2013, 13, 102-108.	2.0	6
84	Transglutaminaseâ€modified wool keratin film and its potential application in tissue engineering. Engineering in Life Sciences, 2013, 13, 149-155.	2.0	46
85	The combined use of cutinase, keratinase and protease treatments for wool bio-antifelting. Fibers and Polymers, 2011, 12, 760-764.	1.1	31
86	Combined use of mild oxidation and cutinase/lipase pretreatments for enzymatic processing of wool fabrics. Engineering in Life Sciences, 2010, 10, 19-25.	2.0	19
87	A comparative evaluation of the action of savinase and papain to the cutinase-pretreated wool. Fibers and Polymers, 2010, 11, 586-592.	1.1	13
88	Effects of cutinase on the enzymatic shrink-resist finishing of wool fabrics. Enzyme and Microbial Technology, 2009, 44, 302-308.	1.6	42
89	Effect of protease treatment on dyeing properties of wool fabrics for single bath. Engineering in Life Sciences, 2009, 9, 135-139.	2.0	16
90	Effect of microbial transglutaminase on dyeing properties of natural dyes on wool fabric. Biocatalysis and Biotransformation, 2008, 26, 399-404.	1.1	9

#	Article	IF	CITATIONS
91	A bacteriostatic and hemostatic medical dressing based on PEG modified keratin/carboxymethyl chitosan. International Journal of Polymeric Materials and Polymeric Biomaterials, 0, , 1-9.	1.8	0