Huilin Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3247769/publications.pdf Version: 2024-02-01

Нины

#	Article	IF	CITATIONS
1	Perovskite Solar Cells Employing a PbSO ₄ (PbO) ₄ Quantum Dot-Doped Spiro-OMeTAD Hole Transport Layer with an Efficiency over 22%. ACS Applied Materials & Interfaces, 2022, 14, 2989-2999.	8.0	19
2	Toward highâ€efficiency stable 2D/3D perovskite solar cells by incorporating multifunctional CNT:TiO ₂ additives into 3D perovskite layer. EcoMat, 2022, 4, e12166.	11.9	31
3	Effects of the incorporation amounts of CdS and Cd(SCN2H4)2Cl2 on the performance of perovskite solar cells. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 283-291.	4.9	16
4	Strategies for highâ€performance perovskite solar cells from materials, film engineering to carrier dynamics and photon management. InformaÄnÃ-Materiály, 2022, 4, .	17.3	27
5	Multifunctional <scp>CNT</scp> : <scp>TiO₂</scp> additives in <scp>spiroâ€OMeTAD</scp> layer for highly efficient and stable perovskite solar cells. EcoMat, 2021, 3, e12099.	11.9	53
6	Photoferroelectric perovskite solar cells: Principles, advances and insights. Nano Today, 2021, 37, 101062.	11.9	54
7	Effect of (CH ₃) ₂ Sn(COOH) ₂ Electron Transport Layer Thickness on Device Performance in n-i-p Planar Heterojunction Perovskite Solar Cells. Journal of Physical Chemistry C, 2021, 125, 7552-7559.	3.1	7
8	Spiroâ€OMeTAD:Sb ₂ S ₃ Hole Transport Layer with Triple Functions of Overcoming Lithium Salt Aggregation, Longâ€Term High Conductivity, and Defect Passivation for Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100622.	5.8	30
9	Defect Passivation with Metal Cations toward Efficient and Stable Perovskite Solar Cells Exceeding 22.7% Efficiency. ACS Applied Energy Materials, 2021, 4, 11144-11150.	5.1	9
10	Nearâ€Infraredâ€Irradiationâ€Mediated Synaptic Behavior from Tunable Chargeâ€Trapping Dynamics. Advanced Electronic Materials, 2020, 6, 1900765.	5.1	37
11	A self-powered artificial retina perception system for image preprocessing based on photovoltaic devices and memristive arrays. Nano Energy, 2020, 78, 105246.	16.0	91
12	Ruâ€Doping Enhanced Electrocatalysis of Metal–Organic Framework Nanosheets toward Overall Water Splitting. Chemistry - A European Journal, 2020, 26, 17091-17096.	3.3	51
13	Artificial Synapses: Nearâ€Infraredâ€Irradiationâ€Mediated Synaptic Behavior from Tunable Chargeâ€Trapping Dynamics (Adv. Electron. Mater. 2/2020). Advanced Electronic Materials, 2020, 6, 2070007.	5.1	1
14	Ferroelectric polymers for nonâ€volatile memory devices: a review. Polymer International, 2020, 69, 533-544.	3.1	62
15	Tannic Acid-Mediated <i>In Situ</i> Controlled Assembly of NiFe Alloy Nanoparticles on Pristine Graphene as a Superior Oxygen Evolution Catalyst. ACS Applied Energy Materials, 2020, 3, 3966-3977.	5.1	29
16	Fully photon modulated heterostructure for neuromorphic computing. Nano Energy, 2019, 65, 104000.	16.0	110
17	Graphitic carbon nitride nanosheets for solution processed non-volatile memory devices. Journal of Materials Chemistry C, 2019, 7, 10203-10210.	5.5	24
18	Pristineâ€Grapheneâ€Supported Nitrogenâ€Doped Carbon Selfâ€Assembled from Glucaminiumâ€Based Ionic Liquids as Metalâ€Free Catalyst for Oxygen Evolution. ChemSusChem, 2019, 12, 5041-5050.	6.8	25

Huilin Li

#	Article	IF	CITATIONS
19	A solution processed metal–oxo cluster for rewritable resistive memory devices. Journal of Materials Chemistry C, 2019, 7, 843-852.	5.5	18
20	Ultrasensitive and Stable Au Dimerâ€Based Colorimetric Sensors Using the Dynamically Tunable Gapâ€Dependent Plasmonic Coupling Optical Properties. Advanced Functional Materials, 2018, 28, 1707392.	14.9	48
21	Periodic Porous Alloyed Au–Ag Nanosphere Arrays and Their Highly Sensitive SERS Performance with Good Reproducibility and High Density of Hotspots. ACS Applied Materials & Interfaces, 2018, 10, 9792-9801.	8.0	138
22	Physical process-aided fabrication of periodic Au–M (M = Ag, Cu, Ag–Cu) alloyed nanoparticle arrays with tunable localized surface plasmon resonance and diffraction peaks. RSC Advances, 2018, 8, 9134-9140.	3.6	18
23	Bionic PDMS film with hybrid superhydrophilic/superhydrophobic arrays for water harvest. Surface Innovations, 2018, 6, 141-149.	2.3	15
24	Strong Electronic Interaction in Dualâ€Cationâ€Incorporated NiSe ₂ Nanosheets with Lattice Distortion for Highly Efficient Overall Water Splitting. Advanced Materials, 2018, 30, e1802121.	21.0	361
25	Highly efficient production of ordered wafer-scale gold nanoparticle arrays film by simple heat treatment based on colloidal monolayer. International Journal of Modern Physics B, 2018, 32, 1850192.	2.0	2
26	Gold nanoshell arrays-based visualized sensors of pH: Facile fabrication and high diffraction intensity. Journal of Materials Research, 2017, 32, 717-725.	2.6	8
27	Surface enhanced Raman scattering properties of dynamically tunable nanogaps between Au nanoparticles self-assembled on hydrogel microspheres controlled by pH. Journal of Colloid and Interface Science, 2017, 505, 467-475.	9.4	23
28	Functionalized periodic Au@MOFs nanoparticle arrays as biosensors for dual-channel detection through the complementary effect of SPR and diffraction peaks. Nano Research, 2017, 10, 2257-2270.	10.4	44
29	Controlled synthesis of sponge-like porous Au–Ag alloy nanocubes for surface-enhanced Raman scattering properties. Journal of Materials Chemistry C, 2017, 5, 11039-11045.	5.5	45
30	Rapid and Efficient Self-Assembly of Au@ZnO Core–Shell Nanoparticle Arrays with an Enhanced and Tunable Plasmonic Absorption for Photoelectrochemical Hydrogen Generation. ACS Applied Materials & Interfaces, 2017, 9, 31897-31906.	8.0	53
31	Mo doped Ni ₂ P nanowire arrays: an efficient electrocatalyst for the hydrogen evolution reaction with enhanced activity at all pH values. Nanoscale, 2017, 9, 16674-16679.	5.6	179
32	Optical sensing properties of Au nanoparticle/hydrogel composite microbeads using droplet microfluidics. Nanotechnology, 2017, 28, 405502.	2.6	8
33	Periodic nanostructured Au arrays on an Si electrode for high-performance electrochemical detection of hydrogen peroxide without an enzyme. Journal of Materials Chemistry C, 2016, 4, 9864-9871.	5.5	21
34	Effects of NaSbO3 on phase structure and electrical properties of K0.5Na0.5NbO3–LiTaO3–NaSbO3 piezoelectric ceramics. Journal of Materials Science: Materials in Electronics, 2013, 24, 855-860.	2.2	8
35	Effects of NaTaO3 additions on structure and electrical properties of K0.5Na0.5NbO3–Bi0.5Na0.5TiO3–LiSbO3 piezoelectric ceramics. Ceramics International, 2011, 37, 1959-1965.	4.8	7
36	Crystal structure and properties of K0.5Na0.5NbO3–Bi0.5Na0.5TiO3–LiSbO3 lead-free piezoelectric ceramics. Journal of Alloys and Compounds, 2010, 506, 407-411.	5.5	16