Quinn Besford

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3247694/publications.pdf Version: 2024-02-01

OLINN RESEORD

#	Article	IF	CITATIONS
1	The Impact of Water on the Lateral Nanostructure of a Deep Eutectic Solvent–Solid Interface. Australian Journal of Chemistry, 2022, 75, 111-125.	0.9	7
2	Antioxidant Triggered Metallic 1T' Phase Transformations of Chemically Exfoliated Tungsten Disulfide (WS ₂) Nanosheets. Small, 2022, 18, e2107557.	10.0	3
3	Mechanofluorescent Polymer Brush Surfaces that Spatially Resolve Surface Solvation. ACS Nano, 2022, 16, 3383-3393.	14.6	16
4	Antioxidant Triggered Metallic 1T' Phase Transformations of Chemically Exfoliated Tungsten Disulfide (WS ₂) Nanosheets (Small 12/2022). Small, 2022, 18, .	10.0	0
5	Membranotronics: Bioinspired Nonlinear Ion Transport with Negative Differential Resistance Based on Elastomeric Membrane System. Advanced Functional Materials, 2022, 32, .	14.9	5
6	Molecular Transport within Polymer Brushes: A FRET View at Aqueous Interfaces. Molecules, 2022, 27, 3043.	3.8	6
7	Microemulsion-Assisted Templating of Metal-Stabilized Poly(ethylene glycol) Nanoparticles. Biomacromolecules, 2021, 22, 612-619.	5.4	6
8	Programmable Phototaxis of Metal–Phenolic Particle Microswimmers. Advanced Materials, 2021, 33, e2006177.	21.0	16
9	Fluorinated Metal–Organic Coatings with Selective Wettability. Journal of the American Chemical Society, 2021, 143, 9972-9981.	13.7	21
10	FRETâ€Integrated Polymer Brushes for Spatially Resolved Sensing of Changes in Polymer Conformation. Angewandte Chemie - International Edition, 2021, 60, 16600-16606.	13.8	36
11	FRETâ€Integrated Polymer Brushes for Spatially Resolved Sensing of Changes in Polymer Conformation. Angewandte Chemie, 2021, 133, 16736-16742.	2.0	7
12	Plasma Corona Protects Human Immune Cells from Structurally Nanoengineered Antimicrobial Peptide Polymers. ACS Applied Materials & Interfaces, 2021, 13, 33821-33829.	8.0	4
13	Systematic Comparison of the Structural and Dynamic Properties of Commonly Used Water Models for Molecular Dynamics Simulations. Journal of Chemical Information and Modeling, 2021, 61, 4521-4536.	5.4	94
14	Manipulating meso-scale solvent structure from Pd nanoparticle deposits in deep eutectic solvents. Journal of Chemical Physics, 2021, 155, 074505.	3.0	7
15	Modular Assembly of Host–Guest Metal–Phenolic Networks Using Macrocyclic Building Blocks. Angewandte Chemie, 2020, 132, 281-286.	2.0	10
16	Modular Assembly of Host–Guest Metal–Phenolic Networks Using Macrocyclic Building Blocks. Angewandte Chemie - International Edition, 2020, 59, 275-280.	13.8	51
17	The Biomolecular Corona in 2D and Reverse: Patterning Metal–Phenolic Networks on Proteins, Lipids, Nucleic Acids, Polysaccharides, and Fingerprints. Advanced Functional Materials, 2020, 30, 1905805.	14.9	33
18	Glycogen as a Building Block for Advanced Biological Materials. Advanced Materials, 2020, 32, e1904625.	21.0	53

QUINN BESFORD

#	Article	IF	CITATIONS
19	Protein Component of Oyster Glycogen Nanoparticles: An Anchor Point for Functionalization. ACS Applied Materials & Interfaces, 2020, 12, 38976-38988.	8.0	8
20	Surface Modification of Spider Silk Particles to Direct Biomolecular Corona Formation. ACS Applied Materials & amp; Interfaces, 2020, 12, 24635-24643.	8.0	21
21	Cobalt-Directed Assembly of Antibodies onto Metal–Phenolic Networks for Enhanced Particle Targeting. Nano Letters, 2020, 20, 2660-2666.	9.1	39
22	The Attraction of Water for Itself at Hydrophobic Quartz Interfaces. Journal of Physical Chemistry B, 2020, 124, 6369-6375.	2.6	15
23	Ricocheting Droplets Moving on Superâ€Repellent Surfaces. Advanced Science, 2019, 6, 1901846.	11.2	20
24	Metal-dependent inhibition of amyloid fibril formation: synergistic effects of cobalt–tannic acid networks. Nanoscale, 2019, 11, 1921-1928.	5.6	34
25	Link between Low-Fouling and Stealth: A Whole Blood Biomolecular Corona and Cellular Association Analysis on Nanoengineered Particles. ACS Nano, 2019, 13, 4980-4991.	14.6	53
26	Selective Metal–Phenolic Assembly from Complex Multicomponent Mixtures. ACS Applied Materials & Interfaces, 2019, 11, 17714-17721.	8.0	27
27	In Situ Characterization of Protein Corona Formation on Silica Microparticles Using Confocal Laser Scanning Microscopy Combined with Microfluidics. ACS Applied Materials & Interfaces, 2019, 11, 2459-2469.	8.0	51
28	Cobalt Phosphate Nanostructures for Non-Enzymatic Glucose Sensing at Physiological pH. ACS Applied Materials & Interfaces, 2018, 10, 42786-42795.	8.0	64
29	Selfâ€Assembled Metal–Phenolic Networks on Emulsions as Lowâ€Fouling and pHâ€Responsive Particles. Small, 2018, 14, e1802342.	10.0	58
30	Glycogen-nucleic acid constructs for gene silencing in multicellular tumor spheroids. Biomaterials, 2018, 176, 34-49.	11.4	35
31	Stabilizing Dipolar Interactions Drive Specific Molecular Structure at the Water Liquid–Vapor Interface. Journal of Physical Chemistry B, 2018, 122, 8309-8314.	2.6	11
32	Self-Assembly of Nano- to Macroscopic Metal–Phenolic Materials. Chemistry of Materials, 2018, 30, 5750-5758.	6.7	59
33	Lactosylated Glycogen Nanoparticles for Targeting Prostate Cancer Cells. ACS Applied Materials & Interfaces, 2017, 9, 16869-16879.	8.0	42
34	Rustâ€Mediated Continuous Assembly of Metal–Phenolic Networks. Advanced Materials, 2017, 29, 1606717.	21.0	112
35	Influence of Ionic Strength on the Deposition of Metal–Phenolic Networks. Langmuir, 2017, 33, 10616-10622.	3.5	61
36	Long-range dipolar order and dispersion forces in polar liquids. Journal of Chemical Physics, 2017, 147, 194503.	3.0	11

QUINN BESFORD

#	Article	IF	CITATIONS
37	Probing cell internalisation mechanics with polymer capsules. Nanoscale, 2016, 8, 17096-17101.	5.6	21
38	The coalescence of polystyrene in correlated binary solvents. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 948-955.	2.1	3
39	Pair correlations that link the hydrophobic and Hofmeister effects. Physical Chemistry Chemical Physics, 2016, 18, 14949-14959.	2.8	5
40	Liver glycogen in type 2 diabetic mice is randomly branched as enlarged aggregates with blunted glucose release. Glycoconjugate Journal, 2016, 33, 41-51.	2.7	15
41	Order and correlation contributions to the entropy of hydrophobic solvation. Journal of Chemical Physics, 2015, 142, 114117.	3.0	17
42	The structure of cardiac glycogen in healthy mice. International Journal of Biological Macromolecules, 2012, 51, 887-891.	7.5	36