Duck O Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3246965/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Amplitude modulation transfer functions reveal opposing populations within both the inferior colliculus and medial geniculate body. Journal of Neurophysiology, 2020, 124, 1198-1215.	0.9	33
2	Speech Coding in the Midbrain: Effects of Sensorineural Hearing Loss. Advances in Experimental Medicine and Biology, 2016, 894, 427-435.	0.8	11
3	Near-Field Discrimination of Sound Source Distance in the Rabbit. JARO - Journal of the Association for Research in Otolaryngology, 2015, 16, 255-262.	0.9	6
4	Auditory Distance Coding in Rabbit Midbrain Neurons and Human Perception: Monaural Amplitude Modulation Depth as a Cue. Journal of Neuroscience, 2015, 35, 5360-5372.	1.7	29
5	Azimuth and envelope coding in the inferior colliculus of the unanesthetized rabbit: effect of reverberation and distance. Journal of Neurophysiology, 2014, 112, 1340-1355.	0.9	18
6	Amplitude modulation detection by human listeners in reverberant sound fields: Carrier bandwidth effects and binaural versus monaural comparison. Proceedings of Meetings on Acoustics, 2013, 15, .	0.3	14
7	Conditional Knockout of Tumor Overexpressed Gene in Mouse Neurons Affects RNA Granule Assembly, Granule Translation, LTP and Short Term Habituation. PLoS ONE, 2013, 8, e69989.	1.1	11
8	Approaches to the study of neural coding of sound source location and sound envelope in real environments. Frontiers in Neural Circuits, 2012, 6, 42.	1.4	16
9	Spatial tuning to sound-source azimuth in the inferior colliculus of unanesthetized rabbit. Journal of Neurophysiology, 2011, 106, 2698-2708.	0.9	14
10	Amplitude modulation detection by human listeners in sound fields. Proceedings of Meetings on Acoustics, 2011, 12, 50005-50010.	0.3	10
11	Acoustic Cues for Sound Source Distance and Azimuth in Rabbits, a Racquetball and a Rigid Spherical Model. JARO - Journal of the Association for Research in Otolaryngology, 2010, 11, 541-557.	0.9	26
12	Acoustic recordings in human ear canals to sounds at different locations. Otolaryngology - Head and Neck Surgery, 2010, 142, 615-617.	1.1	8
13	Processing Temporal Modulations in Binaural and Monaural Auditory Stimuli by Neurons in the Inferior Colliculus and Auditory Cortex. JARO - Journal of the Association for Research in Otolaryngology, 2009, 10, 579-593.	0.9	31
14	Stimulus-frequency otoacoustic emission: Measurements in humans and simulations with an active cochlear model. Journal of the Acoustical Society of America, 2008, 123, 2651-2669.	0.5	56
15	Acoustic cues underlying auditory distance in barn owls. Acta Oto-Laryngologica, 2008, 128, 382-387.	0.3	7
16	Cochlear Models Incorporating Active Processes. , 2008, , 381-394.		2
17	Organization of Olivocochlear Neurons in the Cat Studied with the Retrograde Tracer Cholera Toxin-B. JARO - Journal of the Association for Research in Otolaryngology, 2002, 3, 457-478.	0.9	20

Adaptation of Distortion Product Otoacoustic Emission in Humans. , 2001, 2, 31-40.

DUCK O КІМ

#	Article	IF	CITATIONS
19	Connections between the Dorsal Raphe Nucleus and a Hindbrain Region Consisting of the Cochlear Nucleus and Neighboring Structures. Acta Oto-Laryngologica, 2001, 121, 284-288.	0.3	17
20	Projection of the marginal shell of the anteroventral cochlear nucleus to olivocochlear neurons in the cat. , 2000, 420, 127-138.		56
21	Computational model for the bushy cell of the cochlear nucleus. Neurocomputing, 2000, 32-33, 189-196.	3.5	1
22	Adaptation of 2f1–2f2 distortion product otoacoustic emission in young-adult and old CBA and C57 mice. Journal of the Acoustical Society of America, 1999, 105, 3399-3409.	0.5	29
23	Responses of neurons to click-pairs as simulated echoes: Auditory nerve to auditory cortex. Journal of the Acoustical Society of America, 1999, 106, 3460-3472.	0.5	109
24	Distortion product otoacoustic emissions in the CBA/J mouse model of presbycusis. Hearing Research, 1999, 134, 29-38.	0.9	25
25	Responses of anteroventral cochlear nucleus neurons of the unanesthetized decerebrate cat to click pairs as simulated echoes. Hearing Research, 1998, 125, 131-146.	0.9	34
26	Marginal Shell of the Anteroventral Cochlear Nucleus: Single-Unit Response Properties in the Unanesthetized Decerebrate Cat. Journal of Neurophysiology, 1997, 77, 2083-2097.	0.9	27
27	Marginal shell of the anteroventral cochlear nucleus: intensity coding in single units of the unanesthetized, decerebrate cat. Neuroscience Letters, 1996, 205, 71-74.	1.0	23
28	Marginal Shell of the Anteroventral Cochlear Nucleus: Acoustically Weakly-Driven and Not-Driven Units in the Unanesthetized Decerebrate Cat. Acta Oto-Laryngologica, 1996, 116, 280-283.	0.3	14
29	Responses of auditory nerve fibers of the unanesthetized decerebrate cat to click pairs as simulated echoes. Journal of Neurophysiology, 1996, 76, 17-29.	0.9	57
30	Distortion Product Otoacoustic Emission Test of Sensorineural Hearing Loss in Humans: Comparison of Unequal- and Equal-Level Stimuli. Annals of Otology, Rhinology and Laryngology, 1996, 105, 982-990.	0.6	21
31	Distortion Product Otoacoustic Emission Test of Sensorineural Hearing Loss: Performance Regarding Sensitivity, Specificity and Receiver Operating Characteristics. Acta Oto-Laryngologica, 1996, 116, 3-11.	0.3	58
32	Small neurons in the vestibular nerve root project to the marginal shell of the anteroventral cochlear nucleus in the cat. Brain Research, 1995, 700, 295-298.	1.1	23
33	Spontaneous and sound-evoked discharge characteristics of complex-spiking neurons in the dorsal cochlear nucleus of the unanesthetized decerebrate cat. Journal of Neurophysiology, 1995, 73, 550-561.	0.9	54
34	A computational model with ionic conductances for the fusiform cell of the dorsal cochlear nucleus. Journal of the Acoustical Society of America, 1994, 96, 1501-1514.	0.5	14
35	Discharge suppression in the silent interval preceding the tone burst in pauseâ€build units of the dorsal cochlear nucleus of the unanesthetized decerebrate cat. Journal of the Acoustical Society of America, 1993, 94, 3227-3231.	0.5	8
36	Amplitude-modulated tone encoding behavior of cochlear nucleus neurons: Modeling study. Hearing Research, 1992, 58, 153-165.	0.9	20

Duck O Кім

#	Article	IF	CITATIONS
37	Distortion-product and click-evoked otoacoustic emissions of normally-hearing adults. Hearing Research, 1992, 58, 227-240.	0.9	78
38	Analysis of temporal discharge characteristics of dorsal cochlear nucleus neurons of unanesthetized decerebrate cats. Journal of Neurophysiology, 1992, 67, 1247-1263.	0.9	24
39	Auditory nerve spatial encoding of high-frequency pure tones: Population response profiles derived from d' measure associated with nearby places along the cochlea. Hearing Research, 1991, 52, 167-179.	0.9	16
40	Otoacoustic Emissions in Normal and Hearing-Impaired Children and Normal Adults. Laryngoscope, 1991, 101, 965???976.	1.1	33
41	Simulations of cochlear nucleus neural circuitry: Excitatory–inhibitory responseâ€area types l–IV. Journal of the Acoustical Society of America, 1991, 90, 3106-3121.	0.5	23
42	Spatial response profiles of posteroventral cochlear nucleus neurons and auditory-nerve fibers in unanesthetized decerebrate cats: Response to pure tones. Journal of the Acoustical Society of America, 1991, 89, 2804-2817.	0.5	17
43	Distortion-Product and Click-Evoked Otoacoustic Emissions in Healthy Newborns. JAMA Otolaryngology, 1991, 117, 1382-1389.	1.5	41
44	A population study of auditoryâ€nerve fibers in unanesthetized decerebrate cats: Response to pure tones. Journal of the Acoustical Society of America, 1990, 87, 1648-1655.	0.5	67
45	Distortion Product Otoacoustic Emissions in Normal and Impaired Adult Ears. JAMA Otolaryngology, 1990, 116, 1309-1316.	1.5	51
46	Responses of DCN-PVCN neurons and auditory nerve fibers in unanesthetized decerebrate cats to AM and pure tones: Analysis with autocorrelation/power-spectrum. Hearing Research, 1990, 45, 95-113.	0.9	145
47	Active and nonlinear cochlear biomechanics and the role of outer-hair-cell subsystem in the mammalian auditory system. Hearing Research, 1986, 22, 105-114.	0.9	189
48	A model for active elements in cochlear biomechanics. Journal of the Acoustical Society of America, 1986, 79, 1472-1480.	0.5	361
49	Responses of Cochlear Nucleus Neurons to Speech Signals: Neural Encoding of Pitch, Intensity and other Parameters. , 1986, , 281-288.		20
50	Spontaneous otoacoustic emissions in chinchilla ear canals: Correlation with histopathology and suppression by external tones. Hearing Research, 1984, 16, 299-314.	0.9	90
51	An active cochlear model showing sharp tuning and high sensitivity. Hearing Research, 1983, 9, 123-130.	0.9	304
52	SPATIOTEMPORAL RESPONSE PATTERNS IN POPULATIONS OF COCHLEAR NERVE FIBERS: SINGLE- AND TWO-TONE STUDIES. Annals of the New York Academy of Sciences, 1983, 405, 68-78.	1.8	3
53	Response of cochlear nerve fibers to brief acoustic stimuli: Role of dischargeâ€history effects. Journal of the Acoustical Society of America, 1983, 74, 1392-1398.	0.5	53
54	The behavior of acoustic distortion products in the ear canals of chinchillas with normal or damaged ears. Journal of the Acoustical Society of America, 1982, 72, 774-780.	0.5	123

Ducк О Кім

#	Article	IF	CITATIONS
55	Efferent neural control of cochlear mechanics? Olivocochlear bundle stimulation affects cochlear biomechanical nonlinearity. Hearing Research, 1982, 6, 171-182.	0.9	430

Cochlear microphonic evidence for mechanical propagation of distortion products (\mathcal{E} '2 \hat{a} ' \mathcal{E} '1) and ($2\mathcal{E}$ '1) Tj ETQq0.0 0 rgBT/Overlock

57	Effects of altering organ of Corti on cochlear distortion products f2 - f1 and 2f1 - f2. Journal of Neurophysiology, 1982, 47, 303-328.	0.9	108
58	Stimulus and recovery dependence of cat cochlear nerve fiber spike discharge probability Journal of Neurophysiology, 1982, 48, 856-873.	0.9	93
59	Cochlear mechanics: Implications of electrophysiological and acoustical observations. Hearing Research, 1980, 2, 297-317.	0.9	238
60	Cochlear mechanics: Nonlinear behavior in twoâ€tone responses as reflected in cochlearâ€nerveâ€fiber responses and in earâ€canal sound pressure. Journal of the Acoustical Society of America, 1980, 67, 1704-1721.	0.5	362
61	A population study of cochlear nerve fibers: comparison of spatial distributions of average-rate and phase-locking measures of responses to single tones. Journal of Neurophysiology, 1979, 42, 16-30.	0.9	185
62	Cochlear nerve fiber responses: Distribution along the cochlear partition. Journal of the Acoustical Society of America, 1975, 58, 867-869.	0.5	123
63	A system of nonlinear differential equations modeling basilarâ€membrane motion. Journal of the Acoustical Society of America, 1973, 54, 1517-1529.	0.5	102
64	Response Patterns of Single Cochlear Nerve Fibers to Click Stimuli: Descriptions for Cat. Journal of the Acoustical Society of America, 1972, 52, 1669-1677.	0.5	103
65	Physiology of the Auditory Nerve. , 0, , 1371-1379.		0