Mark A Purnell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3246733/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dietary inference from dental topographic analysis of feeding tools in diverse animals. Methods in Ecology and Evolution, 2022, 13, 1464-1474.	2.2	1
2	Dietary constraints of phytosaurian reptiles revealed by dental microwear textural analysis. Palaeontology, 2021, 64, 119-136.	1.0	10
3	Dental microwear texture analysis as a tool for dietary discrimination in elasmobranchs. Scientific Reports, 2021, 11, 2444.	1.6	3
4	Dental microwear texture analysis along reptile tooth rows: complex variation with non-dietary variables. Royal Society Open Science, 2021, 8, 201754.	1.1	9
5	Late Triassic (Norian) Conodont Apparatuses Revealed by Conodont Clusters from Yunnan Province, Southwestern China. Journal of Earth Science (Wuhan, China), 2021, 32, 709-724.	1.1	9
6	Systematic analysis of exceptionally preserved fossils: correlated patterns of decay and preservation. Palaeontology, 2021, 64, 789-803.	1.0	4
7	Dietary signals in dental microwear of predatory small mammals appear unaffected by extremes in environmental abrasive load. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 558, 109929.	1.0	10
8	Dietary diversity and evolution of the earliest flying vertebrates revealed by dental microwear texture analysis. Nature Communications, 2020, 11, 5293.	5.8	27
9	The Mazon Creek Lagerstäte: a diverse late Paleozoic ecosystem entombed within siderite concretions. Journal of the Geological Society, 2019, 176, 1-11.	0.9	46
10	Dietary differences in archosaur and lepidosaur reptiles revealed by dental microwear textural analysis. Scientific Reports, 2019, 9, 11691.	1.6	33
11	Experimental analysis of softâ€ŧissue fossilization: opening the black box. Palaeontology, 2018, 61, 317-323.	1.0	45
12	The phylogenetic signal in tooth wear: What does it mean?. Ecology and Evolution, 2018, 8, 11359-11362.	0.8	11
13	Reconstruction, composition and homology of conodont skeletons: a response to Agematsu <i>etÂal</i> Palaeontology, 2018, 61, 793-796.	1.0	4
14	Pterosaur dietary hypotheses: a review of ideas and approaches. Biological Reviews, 2018, 93, 2021-2048.	4.7	50
15	Testing hypotheses of element loss and instability in the apparatus composition of complex conodonts: articulated skeletons of <i>Hindeodus</i> . Palaeontology, 2017, 60, 595-608.	1.0	21
16	Tooth microwear texture in odontocete whales: variation with tooth characteristics and implications for dietary analysis. Biosurface and Biotribology, 2017, 3, 184-195.	0.6	24
17	An examination of feeding ecology in Pleistocene proboscideans from southern China (Sinomastodon) Tj ETQq1 445, 60-70.	1 0.78431 0.7	4 rgBT /Ov 43
18	The spectacular fossils of the â€~water margin': the Cambrian biota of Chengjiang, Yunnan, China. Geology Today, 2016, 32, 233-237.	0.3	1

#	Article	IF	CITATIONS
19	The eyes of Tullimonstrum reveal a vertebrate affinity. Nature, 2016, 532, 500-503.	13.7	48
20	Pigmented anatomy in Carboniferous cyclostomes and the evolution of the vertebrate eye. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161151.	1.2	44
21	3D tooth microwear texture analysis in fishes as a test of dietary hypotheses of durophagy. Surface Topography: Metrology and Properties, 2016, 4, 014006.	0.9	26
22	The impact of taphonomic data on phylogenetic resolution: Helenodora inopinata (Carboniferous,) Tj ETQq0 0 C) rgBT/Ove	erlock 10 Tf 5 18
23	Accuracy and Precision of Silicon Based Impression Media for Quantitative Areal Texture Analysis. Scientific Reports, 2015, 5, 10800.	1.6	55
24	New data on the palaeobiology of the enigmatic yunnanozoans from the <scp>C</scp> hengjiang <scp>B</scp> iota, <scp>L</scp> ower <scp>C</scp> ambrian, <scp>C</scp> hina. Palaeontology, 2015, 58, 45-70.	1.0	12
25	Tooth microwear formation rate in <i>Gasterosteus aculeatus</i> . Journal of Fish Biology, 2014, 84, 1582-1589.	0.7	8
26	Decay of velvet worms (Onychophora), and bias in the fossil record of lobopodians. BMC Evolutionary Biology, 2014, 14, 222.	3.2	45
27	Finite element, occlusal, microwear and microstructural analyses indicate that conodont microstructure is adapted to dental function. Palaeontology, 2014, 57, 1059-1066.	1.0	30
28	Dietary specializations and diversity in feeding ecology of the earliest stem mammals. Nature, 2014, 512, 303-305.	13.7	125
29	Withinâ€guild dietary discrimination from 3â€ <scp>D</scp> textural analysis of tooth microwear in insectivorous mammals. Journal of Zoology, 2013, 291, 249-257.	0.8	44
30	Atlas of vertebrate decay: a visual and taphonomic guide to fossil interpretation. Palaeontology, 2013, 56, 457-474.	1.0	56
31	Unusual anal fin in a Devonian jawless vertebrate reveals complex origins of paired appendages. Biology Letters, 2013, 9, 20130002.	1.0	26
32	Quantitative three-dimensional microtextural analyses of tooth wear as a tool for dietary discrimination in fishes. Journal of the Royal Society Interface, 2012, 9, 2225-2233.	1.5	59
33	Morphology of Cambrian lobopodian eyes from the Chengjiang LagerstÃŧte and their evolutionary significance. Arthropod Structure and Development, 2012, 41, 495-504.	0.8	15
34	Quantitative analysis of conodont tooth wear and damage as a test of ecological and functional hypotheses. Paleobiology, 2012, 38, 605-626.	1.3	32
35	A new osteostracan fauna from the Devonian of the Welsh Borderlands and observations on the taxonomy and growth of Osteostraci. Journal of Vertebrate Paleontology, 2012, 32, 1002-1017.	0.4	11
36	Cladistic tests of monophyly and relationships of biostratigraphically significant conodonts using multielement skeletal data – <i>Lochriea homopunctatus</i> and the genus <i>Lochriea</i> . Palaeontology, 2012, 55, 1279-1291.	1.0	7

MARK A PURNELL

#	Article	IF	CITATIONS
37	Decay of vertebrate characters in hagfish and lamprey (Cyclostomata) and the implications for the vertebrate fossil record. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1150-1157.	1.2	73
38	Taphonomy and affinity of an enigmatic Silurian vertebrate, Jamoytius kerwoodi White. Palaeontology, 2010, 53, 1393-1409.	1.0	57
39	Non-random decay of chordate characters causes bias in fossil interpretation. Nature, 2010, 463, 797-800.	13.7	173
40	Quantitative analysis of dental microwear in hadrosaurid dinosaurs, and the implications for hypotheses of jaw mechanics and feeding. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11194-11199.	3.3	68
41	Distinguishing heat from light in debate over controversial fossils. BioEssays, 2009, 31, 178-189.	1.2	145
42	The Evolutionary Emergence of Vertebrates From Among Their Spineless Relatives. Evolution: Education and Outreach, 2009, 2, 204-212.	0.3	2
43	Morphological criteria for recognising homology in isolated skeletal elements: comparison of traditional and morphometric approaches in conodonts. Palaeontology, 2009, 52, 1243-1256.	1.0	15
44	The interrelationships of â€~complex' conodonts (Vertebrata). Journal of Systematic Palaeontology, 2008, 6, 119-153.	0.6	72
45	Eramosa LagerstÃæte—Exceptionally preserved soft-bodied biotas with shallow-marine shelly and bioturbating organisms (Silurian, Ontario, Canada). Geology, 2007, 35, 879.	2.0	50
46	Correlated Evolution and Dietary Change in Fossil Stickleback. Science, 2007, 317, 1887-1887.	6.0	33
47	A New Semi-Automatic Morphometric Protocol for Conodonts and a Preliminary Taxonomic Application. Systematics Association Special Volume, 2007, , 225-237.	0.2	1
48	Quantitative analysis of dental microwear in threespine stickleback: a new approach to analysis of trophic ecology in aquatic vertebrates. Journal of Animal Ecology, 2006, 75, 967-977.	1.3	41
49	Genome duplication, extinction and vertebrate evolution. Trends in Ecology and Evolution, 2005, 20, 312-319.	4.2	231
50	Feeding in extinct jawless heterostracan fishes and testing scenarios of early vertebrate evolution. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 83-88.	1.2	61
51	Apparatus Composition, Growth, And Survivorship Of The Lower Ordovician Conodont paracordylodus Gracilis Lindstrom, 1955. Palaeontology, 2002, 45, 209-228.	1.0	29
52	<i>Taphrognathus carinatus</i> (Higgins & Varker) (Conodonta,) Tj E taphrognathids. Journal of Micropalaeontology, 2002, 21, 97-104.	[Qq0 0 0 rg 1.3	BT /Overlock 1 1
53	Orientation and anatomical notation in conodonts. Journal of Paleontology, 2000, 74, 113-122.	0.5	89
54	<i>Ubinates</i> , a new name for the genus <i>Aethotaxis</i> Baesemann, 1973 (Vertebrata, Conodonta) preoccupied by <i>Aethotaxis</i> Dewitt, 1962 (Vertebrata, Osteichtyes). Journal of Paleontology,	0.5	3

2000, 74, 544-544.

MARK A PURNELL

#	Article	IF	CITATIONS
55	ORIENTATION AND ANATOMICAL NOTATION IN CONODONTS. Journal of Paleontology, 2000, 74, 113-122.	0.5	127
56	Growth, function, and the conodont fossil record. Geology, 1999, 27, 251.	2.0	50
57	Conodont anatomy, chordate phylogeny and vertebrate classification. Lethaia, 1998, 31, 211-219.	0.6	36
58	Architecture and functional morphology of the skeletal apparatus of ozarkodinid conodonts. Philosophical Transactions of the Royal Society B: Biological Sciences, 1997, 352, 1545-1564.	1.8	74
59	The conodont controversies. Trends in Ecology and Evolution, 1996, 11, 463-468.	4.2	47
60	The Nature of the Beast: Conodonts as Animals. The Paleontological Society Special Publications, 1996, 8, 315-315.	0.0	1
61	Modelling the Conodont Skeleton: A New Reconstruction for the Conodont Mouth. The Paleontological Society Special Publications, 1996, 8, 106-106.	0.0	0
62	Microwear on conodont elements and macrophagy in the first vertebrates. Nature, 1995, 374, 798-800.	13.7	139
63	Conodonts and the first vertebrates. Endeavour, 1995, 19, 20-27.	0.1	22
64	Large eyes and vision in conodonts. Lethaia, 1995, 28, 187-188.	0.6	21
65	Skeletal ontogeny and feeding mechanisms in conodonts. Lethaia, 1994, 27, 129-138.	0.6	41
66	Feeding mechanisms in conodonts and the function of the earliest vertebrate hard tissues. Geology, 1993, 21, 375.	2.0	47
67	The <i>Kladognathus</i> apparatus (Conodonta, Carboniferous): homologies with ozarkodinids, and the prioniodinid Bauplan. Journal of Paleontology, 1993, 67, 875-882.	0.5	25
68	<i>Vogelgnathus</i> Norby and Rexroad (Conodonta): new species from the Lower Carboniferous of Atlantic Canada and northern England. Journal of Paleontology, 1992, 66, 311-332.	0.5	12
69	Apparatus architecture and allometry: the keys to conodont element function?. The Paleontological Society Special Publications, 1992, 6, 239-239.	0.0	1
70	Blade-shaped conodont elements functioned as cutting teeth. Nature, 1992, 359, 629-631.	13.7	44