Huanglong Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3246661/publications.pdf Version: 2024-02-01

HUANCIONCL

#	Article	IF	CITATIONS
1	Ferroelectric-HfO2/oxide interfaces, oxygen distribution effects, and implications for device performance. Applied Physics Letters, 2022, 120, .	1.5	6
2	Twist-angle-controlled neutral exciton annihilation in WS ₂ homostructures. Nanoscale, 2022, 14, 5537-5544.	2.8	4
3	Internal reverse-biased p–n junctions: A possible origin of the high resistance in chalcogenide superlattice for interfacial phase change memory. Applied Physics Letters, 2022, 120, .	1.5	1
4	Telluriumâ€Based Artificial Neuron: Capturing Biological Complexity While Keeping It Simple. Advanced Electronic Materials, 2022, 8, .	2.6	2
5	A steep-slope tellurium transistor with a native voltage amplifying threshold switch. Applied Physics Letters, 2022, 120, 223502.	1.5	4
6	A complementary resistive switching neuron. Nanotechnology, 2022, 33, 355201.	1.3	6
7	Bi 2 O 2 Se:Bi 2 O 5 Se Highâ€K Stack as a 2D Analog of Si:SiO 2 : A Firstâ€Principles Study. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2000465.	1.2	1
8	Top–Down Synthesis of Noble Metal Particles on High-Entropy Oxide Supports for Electrocatalysis. Chemistry of Materials, 2021, 33, 1771-1780.	3.2	92
9	A Marr's Threeâ€Level Analytical Framework for Neuromorphic Electronic Systems. Advanced Intelligent Systems, 2021, 3, 2100054.	3.3	3
10	Native O and Se Vacancy Defects in Bi ₂ O ₅ Se, Bi ₂ O ₉ Se ₃ , and Bi ₂ O ₁₀ Se ₃ Dielectrics for Nanoelectronics. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2000540.	1.2	1
11	A new opportunity for the emerging tellurium semiconductor: making resistive switching devices. Nature Communications, 2021, 12, 6081.	5.8	25
12	Solution processed lead-free cesium titanium halide perovskites and their structural, thermal and optical characteristics. Journal of Materials Chemistry C, 2020, 8, 1591-1597.	2.7	67
13	Multi-component nanoporous alloy/(oxy)hydroxide for bifunctional oxygen electrocatalysis and rechargeable Zn-air batteries. Applied Catalysis B: Environmental, 2020, 268, 118431.	10.8	96
14	A New Opportunity for 2D van der Waals Heterostructures: Making Steepâ€Slope Transistors. Advanced Materials, 2020, 32, e1906000.	11.1	82
15	MOF-Derived 2D/3D Hierarchical N-Doped Graphene as Support for Advanced Pt Utilization in Ethanol Fuel Cell. ACS Applied Materials & Interfaces, 2020, 12, 47667-47676.	4.0	33
16	Rugged High-Entropy Alloy Nanowires with in Situ Formed Surface Spinel Oxide As Highly Stable Electrocatalyst in Zn–Air Batteries. , 2020, 2, 1698-1706.		114
17	Ultrahigh drive current and large selectivity in GeS selector. Nature Communications, 2020, 11, 4636.	5.8	83
18	Anchoring Mo single atoms/clusters and N on edge-rich nanoporous holey graphene as bifunctional air electrode in Znâ^'air batteries. Applied Catalysis B: Environmental, 2020, 276, 119172.	10.8	79

HUANGLONG LI

#	Article	IF	CITATIONS
19	Semiconducting few-layer PdSe ₂ and Pd ₂ Se ₃ : native point defects and contacts with native metallic Pd ₁₇ Se ₁₅ . Physical Chemistry Chemical Physics, 2020, 22, 7365-7373.	1.3	8
20	Synergistically coupling ultrasmall PtCu nanoalloys with highly porous CoP nanosheets as an enhanced electrocatalyst for electrochemical hydrogen evolution. Sustainable Energy and Fuels, 2020, 4, 2551-2558.	2.5	12
21	Perovskite hetero-anionic-sublattice interfaces for optoelectronics and nonconventional electronics. Nanoscale, 2020, 12, 7263-7272.	2.8	5
22	Nanoporous high-entropy alloys with low Pt loadings for high-performance electrochemical oxygen reduction. Journal of Catalysis, 2020, 383, 164-171.	3.1	125
23	A unified mid-gap defect model for amorphous GeTe phase change material. Applied Physics Letters, 2020, 116, .	1.5	7
24	First-principles prediction of the native filament:dielectric interfaces for the possible filamentary switching mechanism in chalcogenide selector devices. Journal of Applied Physics, 2020, 127, 045105.	1.1	3
25	Towards artificial general intelligence with hybrid Tianjic chip architecture. Nature, 2019, 572, 106-111.	13.7	517
26	Structural changes during the switching transition of chalcogenide selector devices. Applied Physics Letters, 2019, 115, .	1.5	13
27	Noble Metal-Free Nanoporous High-Entropy Alloys as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. , 2019, 1, 526-533.		229
28	Nanoporous Alâ€Niâ€Coâ€Irâ€Mo Highâ€Entropy Alloy for Recordâ€High Water Splitting Activity in Acidic Environments. Small, 2019, 15, e1904180.	5.2	230
29	Native filament-to-dielectric interfaces in phase change superlattice memories. Microelectronic Engineering, 2019, 215, 111007.	1.1	5
30	Self-Doping Memristors with Equivalently Synaptic Ion Dynamics for Neuromorphic Computing. ACS Applied Materials & amp; Interfaces, 2019, 11, 24230-24240.	4.0	35
31	Metal and Nonmetal Codoped 3D Nanoporous Graphene for Efficient Bifunctional Electrocatalysis and Rechargeable Zn–Air Batteries. Advanced Materials, 2019, 31, e1900843.	11.1	236
32	Materials Selection and Mechanism of Non-linear Conduction in Chalcogenide Selector Devices. Scientific Reports, 2019, 9, 1867.	1.6	31
33	Truly Concomitant and Independently Expressed Short―and Longâ€Term Plasticity in a Bi ₂ O ₂ Seâ€Based Threeâ€Terminal Memristor. Advanced Materials, 2019, 31, e1805769.	11.1	85
34	Highly Compact Artificial Memristive Neuron with Low Energy Consumption. Small, 2018, 14, e1802188.	5.2	89
35	Electronic Structures of Ge ₂ Sb ₂ Te ₅ /Co ₂ FeX (X: Al,) Tj ETQq1	1 0.7843 1.6	14 rgBT /O
36	Electrochemical metallization cell with solid phase tunable Ge2Sb2Te5 electrolyte. Scientific Reports,	1.6	15

2018, 8, 12101.

HUANGLONG LI

#	Article	IF	CITATIONS
37	Electrochemical metallization cell with anion supplying active electrode. Scientific Reports, 2018, 8, 12617.	1.6	9
38	Engineering the Synaptic Kinetic Process into Memristive Device. Advanced Electronic Materials, 2018, 4, 1800096.	2.6	3
39	Native point defects of semiconducting layered Bi2O2Se. Scientific Reports, 2018, 8, 10920.	1.6	31
40	Electronic Structure and Spin Configuration Trends of Single Transition Metal Impurity in Phase Change Material. Journal of Electronic Materials, 2016, 45, 5158-5169.	1.0	4
41	Identifying and Engineering the Electronic Properties of the Resistive Switching Interface. Journal of Electronic Materials, 2016, 45, 1142-1153.	1.0	7
42	Complex Learning in Bio-plausible Memristive Networks. Scientific Reports, 2015, 5, 10684.	1.6	37
43	Selective Passivation of GeO ₂ /Ge Interface Defects in Atomic Layer Deposited High- <i>k</i> MOS Structures. ACS Applied Materials & Interfaces, 2015, 7, 20499-20506.	4.0	66