## Z Jeffrey Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3246/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Small RNAs mediate transgenerational inheritance of genome-wide trans-acting epialleles in maize.<br>Genome Biology, 2022, 23, 53.                                                                                                                | 8.8  | 19        |
| 2  | Histone H3K27 dimethylation landscapes contribute to genome stability and genetic recombination during wheat polyploidization. Plant Journal, 2021, 105, 678-690.                                                                                 | 5.7  | 24        |
| 3  | DNA hypomethylation in tetraploid rice potentiates stress-responsive gene expression for salt<br>tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .                                         | 7.1  | 44        |
| 4  | Altered chromatin architecture and gene expression during polyploidization and domestication of soybean. Plant Cell, 2021, 33, 1430-1446.                                                                                                         | 6.6  | 55        |
| 5  | LCM and RNA-seq analyses revealed roles of cell cycle and translational regulation and homoeolog expression bias in cotton fiber cell initiation. BMC Genomics, 2021, 22, 309.                                                                    | 2.8  | 7         |
| 6  | An epigenetic basis of inbreeding depression in maize. Science Advances, 2021, 7, .                                                                                                                                                               | 10.3 | 10        |
| 7  | Concerted genomic and epigenomic changes accompany stabilization of Arabidopsis allopolyploids.<br>Nature Ecology and Evolution, 2021, 5, 1382-1393.                                                                                              | 7.8  | 41        |
| 8  | Comparison of <i>Arachis monticola</i> with Diploid and Cultivated Tetraploid Genomes Reveals<br>Asymmetric Subgenome Evolution and Improvement of Peanut. Advanced Science, 2020, 7, 1901672.                                                    | 11.2 | 43        |
| 9  | Temporal Regulation of the Metabolome and Proteome in Photosynthetic and Photorespiratory<br>Pathways Contributes to Maize Heterosis. Plant Cell, 2020, 32, 3706-3722.                                                                            | 6.6  | 45        |
| 10 | Dynamic and reversible DNA methylation changes induced by genome separation and merger of polyploid wheat. BMC Biology, 2020, 18, 171.                                                                                                            | 3.8  | 26        |
| 11 | Single-cell RNA-seq analysis reveals ploidy-dependent and cell-specific transcriptome changes in<br>Arabidopsis female gametophytes. Genome Biology, 2020, 21, 178.                                                                               | 8.8  | 63        |
| 12 | The Rice Circadian Clock Regulates Tiller Growth and Panicle Development Through Strigolactone<br>Signaling and Sugar Sensing. Plant Cell, 2020, 32, 3124-3138.                                                                                   | 6.6  | 112       |
| 13 | From asymmetrical to balanced genomic diversification during rediploidization: Subgenomic evolution in allotetraploid fish. Science Advances, 2020, 6, eaaz7677.                                                                                  | 10.3 | 59        |
| 14 | A Pan-plant Protein Complex Map Reveals Deep Conservation and Novel Assemblies. Cell, 2020, 181,<br>460-474.e14.                                                                                                                                  | 28.9 | 133       |
| 15 | Genomic diversifications of five Gossypium allopolyploid species and their impact on cotton improvement. Nature Genetics, 2020, 52, 525-533.                                                                                                      | 21.4 | 249       |
| 16 | Diurnal regulation of SDG2 and JMJ14 by circadian clock oscillators orchestrates histone modification rhythms in Arabidopsis. Genome Biology, 2019, 20, 170.                                                                                      | 8.8  | 22        |
| 17 | Maternal small RNAs mediate spatial-temporal regulation of gene expression, imprinting, and seed<br>development in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United<br>States of America, 2019, 116, 2761-2766. | 7.1  | 54        |
| 18 | Interactive roles of chromatin regulation and circadian clock function in plants. Genome Biology, 2019, 20, 62.                                                                                                                                   | 8.8  | 26        |

| #  | Article                                                                                                                                                                                                                                      | IF             | CITATIONS           |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------|
| 19 | Epigenetic perspectives on the evolution and domestication of polyploid plant and crops. Current<br>Opinion in Plant Biology, 2018, 42, 37-48.                                                                                               | 7.1            | 74                  |
| 20 | Asymmetrical changes of gene expression, small <scp>RNA</scp> s and chromatin in two resynthesized wheat allotetraploids. Plant Journal, 2018, 93, 828-842.                                                                                  | 5.7            | 40                  |
| 21 | Rice Interploidy Crosses Disrupt Epigenetic Regulation, Gene Expression, and Seed Development.<br>Molecular Plant, 2018, 11, 300-314.                                                                                                        | 8.3            | 27                  |
| 22 | COP1 SUPPRESSOR 4 promotes seedling photomorphogenesis by repressing <i>CCA1</i> and <i>PIF4</i> expression in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11631-11636. | 7.1            | 12                  |
| 23 | Diurnal down-regulation of ethylene biosynthesis mediates biomass heterosis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5606-5611.                                                          | 7.1            | 49                  |
| 24 | B-BOX DOMAIN PROTEIN28 Negatively Regulates Photomorphogenesis by Repressing the Activity of Transcription Factor HY5 and Undergoes COP1-Mediated Degradation. Plant Cell, 2018, 30, 2006-2019.                                              | 6.6            | 105                 |
| 25 | Genomic insights into divergence and dual domestication of cultivated allotetraploid cottons.<br>Genome Biology, 2017, 18, 33.                                                                                                               | 8.8            | 128                 |
| 26 | Epigenomic and functional analyses reveal roles of epialleles in the loss of photoperiod sensitivity during domestication of allotetraploid cottons. Genome Biology, 2017, 18, 99.                                                           | 8.8            | 153                 |
| 27 | Heterologous protein-DNA interactions lead to biased allelic expression of circadian clock genes in interspecific hybrids. Scientific Reports, 2017, 7, 45087.                                                                               | 3.3            | 10                  |
| 28 | Both maternally and paternally imprinted genes regulate seed development in rice. New Phytologist, 2017, 216, 373-387.                                                                                                                       | 7.3            | 67                  |
| 29 | Sub genome anchored physical frameworks of the allotetraploid Upland cotton (Gossypium hirsutum) Tj ETQq1 I<br>7, 15274.                                                                                                                     | 0.78431<br>3.3 | 4 rgBT /Overi<br>23 |
| 30 | Temporal Shift of Circadian-Mediated Gene Expression and Carbon Fixation Contributes to Biomass<br>Heterosis in Maize Hybrids. PLoS Genetics, 2016, 12, e1006197.                                                                            | 3.5            | 100                 |
| 31 | Histone Modifications Define Expression Bias of Homoeologous Genomes in Allotetraploid Cotton.<br>Plant Physiology, 2016, 172, 1760-1771.                                                                                                    | 4.8            | 30                  |
| 32 | Gossypium barbadense genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites. Scientific Reports, 2015, 5, 14139.                                                                         | 3.3            | 271                 |
| 33 | A Longâ€Read Transcriptome Assembly of Cotton ( Gossypium hirsutum L.) and Intraspecific Single<br>Nucleotide Polymorphism Discovery. Plant Genome, 2015, 8, eplantgenome2014.10.0068.                                                       | 2.8            | 12                  |
| 34 | Phytohormonal Networks Promote Differentiation of Fiber Initials on Pre-Anthesis Cotton Ovules<br>Grown In Vitro and In Planta. PLoS ONE, 2015, 10, e0125046.                                                                                | 2.5            | 24                  |
| 35 | Genome-Wide Dosage-Dependent and -Independent Regulation Contributes to Gene Expression and<br>Evolutionary Novelty in Plant Polyploids. Molecular Biology and Evolution, 2015, 32, 2351-2366.                                               | 8.9            | 57                  |
| 36 | Metabolomic and transcriptomic insights into how cotton fiber transitions to secondary wall synthesis, represses lignification, and prolongs elongation. BMC Genomics, 2015, 16, 477.                                                        | 2.8            | 72                  |

| #  | Article                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | BAC-End Sequence-Based SNP Mining in Allotetraploid Cotton ( <i>Gossypium</i> ) Utilizing<br>Resequencing Data, Phylogenetic Inferences, and Perspectives for Genetic Mapping. G3: Genes, Genomes,<br>Genetics, 2015, 5, 1095-1105. | 1.8  | 20        |
| 38 | Epigenetic and developmental regulation in plant polyploids. Current Opinion in Plant Biology, 2015, 24, 101-109.                                                                                                                   | 7.1  | 173       |
| 39 | SCARECROW-LIKE15 interacts with HISTONE DEACETYLASE19 and is essential for repressing the seed maturation programme. Nature Communications, 2015, 6, 7243.                                                                          | 12.8 | 58        |
| 40 | Natural variation in timing of stress-responsive gene expression predicts heterosis in intraspecific hybrids of Arabidopsis. Nature Communications, 2015, 6, 7453.                                                                  | 12.8 | 109       |
| 41 | Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nature Biotechnology, 2015, 33, 531-537.                                                                           | 17.5 | 1,560     |
| 42 | An Epigenetic Role for Disrupted Paternal Gene Expression in Postzygotic Seed Abortion in Arabidopsis<br>Interspecific Hybrids. Molecular Plant, 2015, 8, 1766-1775.                                                                | 8.3  | 39        |
| 43 | Dynamic Roles for Small RNAs and DNA Methylation during Ovule and Fiber Development in Allotetraploid Cotton. PLoS Genetics, 2015, 11, e1005724.                                                                                    | 3.5  | 57        |
| 44 | Control of cotton fibre elongation by a homeodomain transcription factor GhHOX3. Nature Communications, 2014, 5, 5519.                                                                                                              | 12.8 | 205       |
| 45 | A Role for CHH Methylation in the Parent-of-Origin Effect on Altered Circadian Rhythms and Biomass<br>Heterosis in <i>Arabidopsis</i> Intraspecific Hybrids Â. Plant Cell, 2014, 26, 2430-2440.                                     | 6.6  | 69        |
| 46 | miR828 and miR858 regulate homoeologous MYB2 gene functions in Arabidopsis trichome and cotton fibre development. Nature Communications, 2014, 5, 3050.                                                                             | 12.8 | 215       |
| 47 | Transcriptome analysis of extant cotton progenitors revealed tetraploidization and identified genome-specific single nucleotide polymorphism in diploid and allotetraploid cotton. BMC Research Notes, 2014, 7, 493.                | 1.4  | 9         |
| 48 | Polyploidy and small RNA regulation of cotton fiber development. Trends in Plant Science, 2014, 19, 516-528.                                                                                                                        | 8.8  | 68        |
| 49 | Genomic and epigenetic insights into the molecular bases of heterosis. Nature Reviews Genetics, 2013, 14, 471-482.                                                                                                                  | 16.3 | 444       |
| 50 | Ploidy and Hybridity Effects on Growth Vigor and Gene Expression in <i>Arabidopsis<br/>thaliana</i> Hybrids and Their Parents. G3: Genes, Genomes, Genetics, 2012, 2, 505-513.                                                      | 1.8  | 127       |
| 51 | Maternal siRNAs as regulators of parental genome imbalance and gene expression in endosperm of <i>Arabidopsis</i> seeds. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5529-5534.     | 7.1  | 133       |
| 52 | Cis- and trans-regulatory divergence between progenitor species determines gene-expression novelty in Arabidopsis allopolyploids. Nature Communications, 2012, 3, 950.                                                              | 12.8 | 186       |
| 53 | Roles of target site location and sequence complementarity <i>in trans</i> â€acting siRNA formation in Arabidopsis. Plant Journal, 2012, 69, 217-226.                                                                               | 5.7  | 32        |
| 54 | Big roles for small RNAs in polyploidy, hybrid vigor, and hybrid incompatibility. Current Opinion in<br>Plant Biology, 2012, 15, 154-161.                                                                                           | 7.1  | 132       |

| #  | Article                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Auxin boost for cotton. Nature Biotechnology, 2011, 29, 407-409.                                                                                                                                                                                          | 17.5 | 29        |
| 56 | <i>cis</i> - and <i>trans</i> -Regulation of miR163 and Target Genes Confers Natural Variation of<br>Secondary Metabolites in Two <i>Arabidopsis</i> Species and Their Allopolyploids Â. Plant Cell, 2011, 23,<br>1729-1740.                              | 6.6  | 121       |
| 57 | Coordinated histone modifications are associated with gene expression variation within and between species. Genome Research, 2011, 21, 590-598.                                                                                                           | 5.5  | 140       |
| 58 | Activation of Arabidopsis Seed Hair Development by Cotton Fiber-Related Genes. PLoS ONE, 2011, 6, e21301.                                                                                                                                                 | 2.5  | 53        |
| 59 | Unstable Transcripts in Arabidopsis Allotetraploids Are Associated with Nonadditive Gene Expression in Response to Abiotic and Biotic Stresses. PLoS ONE, 2011, 6, e24251.                                                                                | 2.5  | 32        |
| 60 | Near-isogenic cotton germplasm lines that differ in fiber-bundle strength have temporal differences<br>in fiber gene expression patterns as revealed by comparative high-throughput profiling. Theoretical<br>and Applied Genetics, 2010, 120, 1347-1366. | 3.6  | 48        |
| 61 | Structure and size variations between 12A and 12D homoeologous chromosomes based on high-resolution cytogenetic map in allotetraploid cotton. Chromosoma, 2010, 119, 255-266.                                                                             | 2.2  | 32        |
| 62 | Genomic and expression plasticity of polyploidy. Current Opinion in Plant Biology, 2010, 13, 153-159.                                                                                                                                                     | 7.1  | 283       |
| 63 | Tandem duplication of the <i>FLC</i> locus and the origin of a new gene in <i>Arabidopsis</i> related species and their functional implications in allopolyploids. New Phytologist, 2010, 186, 228-238.                                                   | 7.3  | 29        |
| 64 | RNAiâ€mediated downâ€regulation of <i>DCL1</i> and <i>AGO1</i> induces developmental changes in resynthesized <i>Arabidopsis</i> allotetraploids. New Phytologist, 2010, 186, 207-215.                                                                    | 7.3  | 15        |
| 65 | Differential sensitivity of the <i>Arabidopsis thaliana</i> transcriptome and enhancers to the effects of genome doubling. New Phytologist, 2010, 186, 194-206.                                                                                           | 7.3  | 39        |
| 66 | Apyrase (Nucleoside Triphosphate-Diphosphohydrolase) and Extracellular Nucleotides Regulate<br>Cotton Fiber Elongation in Cultured Ovules. Plant Physiology, 2010, 152, 1073-1083.                                                                        | 4.8  | 75        |
| 67 | Molecular mechanisms of polyploidy and hybrid vigor. Trends in Plant Science, 2010, 15, 57-71.                                                                                                                                                            | 8.8  | 510       |
| 68 | Small RNAs serve as a genetic buffer against genomic shock in <i>Arabidopsis</i> interspecific hybrids<br>and allopolyploids. Proceedings of the National Academy of Sciences of the United States of America,<br>2009, 106, 17835-17840.                 | 7.1  | 320       |
| 69 | Duplicate genes increase expression diversity in closely related species and allopolyploids.<br>Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2295-2300.                                                    | 7.1  | 122       |
| 70 | Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature, 2009, 457, 327-331.                                                                                                                                               | 27.8 | 598       |
| 71 | Genome-wide analysis reveals rapid and dynamic changes in miRNA and siRNA sequence and expression<br>during ovule and fiber development in allotetraploid cotton (Gossypium hirsutum L.). Genome<br>Biology, 2009, 10, R122.                              | 9.6  | 128       |
| 72 | Analysis of Gene Expression in Resynthesized Brassica napus Allopolyploids Using Arabidopsis 70mer<br>Oligo Microarrays. PLoS ONE, 2009, 4, e4760.                                                                                                        | 2.5  | 64        |

| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | RNAi of <i>met1</i> Reduces DNA Methylation and Induces Genome-Specific Changes in Gene Expression and Centromeric Small RNA Accumulation in Arabidopsis Allopolyploids. Genetics, 2008, 178, 1845-1858.                | 2.9  | 82        |
| 74 | Genetic and Epigenetic Mechanisms for Gene Expression and Phenotypic Variation in Plant Polyploids.<br>Annual Review of Plant Biology, 2007, 58, 377-406.                                                               | 18.7 | 838       |
| 75 | Gene Expression Changes and Early Events in Cotton Fibre Development. Annals of Botany, 2007, 100, 1391-1401.                                                                                                           | 2.9  | 330       |
| 76 | Toward Sequencing Cotton ( <i>Gossypium</i> ) Genomes: Figure 1 Plant Physiology, 2007, 145, 1303-1310.                                                                                                                 | 4.8  | 390       |
| 77 | Roles of dynamic and reversible histone acetylation in plant development and polyploidy. Biochimica<br>Et Biophysica Acta Gene Regulatory Mechanisms, 2007, 1769, 295-307.                                              | 2.4  | 195       |
| 78 | External factors accelerate expression divergence between duplicate genes. Trends in Genetics, 2007, 23, 162-166.                                                                                                       | 6.7  | 58        |
| 79 | Analysis of gene expression profiles in response to Sclerotinia sclerotiorum in Brassica napus. Planta, 2007, 227, 13-24.                                                                                               | 3.2  | 131       |
| 80 | The Expression of Genes Encoding Lipodepsipeptide Phytotoxins by Pseudomonas syringae pv. syringae<br>Is Coordinated in Response to Plant Signal Molecules. Molecular Plant-Microbe Interactions, 2006, 19,<br>257-269. | 2.6  | 28        |
| 81 | Arabidopsis thaliana histone deacetylase 1 (AtHD1) is localized in euchromatic regions and demonstrates histone deacetylase activity in vitro. Cell Research, 2006, 16, 479-488.                                        | 12.0 | 37        |
| 82 | Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators<br>during early stages of fiber cell development in allotetraploid cotton. Plant Journal, 2006, 47, 761-775.            | 5.7  | 191       |
| 83 | Developmental and gene expression analyses of a cotton naked seed mutant. Planta, 2006, 223, 418-432.                                                                                                                   | 3.2  | 110       |
| 84 | Mechanisms of genomic rearrangements and gene expression changes in plant polyploids. BioEssays,<br>2006, 28, 240-252.                                                                                                  | 2.5  | 371       |
| 85 | Genomewide Nonadditive Gene Regulation in Arabidopsis Allotetraploids. Genetics, 2006, 172, 507-517.                                                                                                                    | 2.9  | 527       |
| 86 | Nonadditive Regulation of <i>FRI</i> and <i>FLC</i> Loci Mediates Flowering-Time Variation in Arabidopsis Allopolyploids. Genetics, 2006, 173, 965-974.                                                                 | 2.9  | 125       |
| 87 | Evolution and Expression of Homeologous Loci in Tragopogon miscellus (Asteraceae), a Recent and<br>Reciprocally Formed Allopolyploid. Genetics, 2006, 173, 1599-1611.                                                   | 2.9  | 166       |
| 88 | Oligonucleotide Microarray Analysis of the SalA Regulon Controlling Phytotoxin Production by<br>Pseudomonas syringae pv. syringae. Molecular Plant-Microbe Interactions, 2005, 18, 324-333.                             | 2.6  | 44        |
| 89 | Reversible Histone Acetylation and Deacetylation Mediate Genome-Wide, Promoter-Dependent and Locus-Specific Changes in Gene Expression During Plant Development. Genetics, 2005, 169, 337-345.                          | 2.9  | 157       |
| 90 | Detecting Differential Expression of Parental or Progenitor Alleles in Genetic Hybrids and<br>Allopolyploids. Methods in Enzymology, 2005, 395, 554-569.                                                                | 1.0  | 4         |

| #   | Article                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Evolution of Genome Size in Brassicaceae. Annals of Botany, 2005, 95, 229-235.                                                                                                                                                                                                | 2.9 | 383       |
| 92  | Methods for Genome-Wide Analysis of Gene Expression Changes in Polyploids. Methods in Enzymology, 2005, 395, 570-596.                                                                                                                                                         | 1.0 | 13        |
| 93  | Wide-Cross Whole-Genome Radiation Hybrid Mapping of Cotton (Gossypium hirsutum L.). Genetics, 2004, 167, 1317-1329.                                                                                                                                                           | 2.9 | 35        |
| 94  | The development of an Arabidopsis model system for genome-wide analysis of polyploidy effects.<br>Biological Journal of the Linnean Society, 2004, 82, 689-700.                                                                                                               | 1.6 | 69        |
| 95  | Stochastic and Epigenetic Changes of Gene Expression in Arabidopsis Polyploids. Genetics, 2004, 167, 1961-1973.                                                                                                                                                               | 2.9 | 323       |
| 96  | Sensitivity of 70-mer oligonucleotides and cDNAs for microarray analysis of gene expression in<br>Arabidopsis and its related species. Plant Biotechnology Journal, 2004, 2, 45-57.                                                                                           | 8.3 | 55        |
| 97  | A Concerted DNA Methylation/Histone Methylation Switch Regulates rRNA Gene Dosage Control and<br>Nucleolar Dominance. Molecular Cell, 2004, 13, 599-609.                                                                                                                      | 9.7 | 336       |
| 98  | Understanding mechanisms of novel gene expression in polyploids. Trends in Genetics, 2003, 19, 141-147.                                                                                                                                                                       | 6.7 | 812       |
| 99  | Natural variation in nucleolar dominance reveals the relationship between nucleolus organizer chromatin topology and rRNA gene transcription in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11418-11423. | 7.1 | 85        |
| 100 | Genetic Control of Developmental Changes Induced by Disruption of Arabidopsis Histone Deacetylase 1<br>( <i>AtHD1</i> ) Expression. Genetics, 2003, 165, 399-409.                                                                                                             | 2.9 | 105       |
| 101 | RNA Polymerase I Transcription in a Brassica Interspecific Hybrid and Its Progenitors: Tests of Transcription Factor Involvement in Nucleolar Dominance, Genetics, 1999, 152, 451-460.                                                                                        | 2.9 | 45        |