Z Jeffrey Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3246/publications.pdf

Version: 2024-02-01

28274 30922 14,765 101 55 102 citations h-index g-index papers 115 115 115 10605 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nature Biotechnology, 2015, 33, 531-537.	17.5	1,560
2	Genetic and Epigenetic Mechanisms for Gene Expression and Phenotypic Variation in Plant Polyploids. Annual Review of Plant Biology, 2007, 58, 377-406.	18.7	838
3	Understanding mechanisms of novel gene expression in polyploids. Trends in Genetics, 2003, 19, 141-147.	6.7	812
4	Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature, 2009, 457, 327-331.	27.8	598
5	Genomewide Nonadditive Gene Regulation in Arabidopsis Allotetraploids. Genetics, 2006, 172, 507-517.	2.9	527
6	Molecular mechanisms of polyploidy and hybrid vigor. Trends in Plant Science, 2010, 15, 57-71.	8.8	510
7	Genomic and epigenetic insights into the molecular bases of heterosis. Nature Reviews Genetics, 2013, 14, 471-482.	16.3	444
8	Toward Sequencing Cotton (<i>Gossypium</i>) Genomes: Figure 1 Plant Physiology, 2007, 145, 1303-1310.	4.8	390
9	Evolution of Genome Size in Brassicaceae. Annals of Botany, 2005, 95, 229-235.	2.9	383
10	Mechanisms of genomic rearrangements and gene expression changes in plant polyploids. BioEssays, 2006, 28, 240-252.	2.5	371
11	A Concerted DNA Methylation/Histone Methylation Switch Regulates rRNA Gene Dosage Control and Nucleolar Dominance. Molecular Cell, 2004, 13, 599-609.	9.7	336
12	Gene Expression Changes and Early Events in Cotton Fibre Development. Annals of Botany, 2007, 100, 1391-1401.	2.9	330
13	Stochastic and Epigenetic Changes of Gene Expression in Arabidopsis Polyploids. Genetics, 2004, 167, 1961-1973.	2.9	323
14	Small RNAs serve as a genetic buffer against genomic shock in <i>Arabidopsis</i> interspecific hybrids and allopolyploids. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17835-17840.	7.1	320
15	Genomic and expression plasticity of polyploidy. Current Opinion in Plant Biology, 2010, 13, 153-159.	7.1	283
16	Gossypium barbadense genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites. Scientific Reports, 2015, 5, 14139.	3.3	271
17	Genomic diversifications of five Gossypium allopolyploid species and their impact on cotton improvement. Nature Genetics, 2020, 52, 525-533.	21.4	249
18	miR828 and miR858 regulate homoeologous MYB2 gene functions in Arabidopsis trichome and cotton fibre development. Nature Communications, 2014, 5, 3050.	12.8	215

#	Article	IF	Citations
19	Control of cotton fibre elongation by a homeodomain transcription factor GhHOX3. Nature Communications, 2014, 5, 5519.	12.8	205
20	Roles of dynamic and reversible histone acetylation in plant development and polyploidy. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2007, 1769, 295-307.	2.4	195
21	Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton. Plant Journal, 2006, 47, 761-775.	5.7	191
22	Cis- and trans-regulatory divergence between progenitor species determines gene-expression novelty in Arabidopsis allopolyploids. Nature Communications, 2012, 3, 950.	12.8	186
23	Epigenetic and developmental regulation in plant polyploids. Current Opinion in Plant Biology, 2015, 24, 101-109.	7.1	173
24	Evolution and Expression of Homeologous Loci in Tragopogon miscellus (Asteraceae), a Recent and Reciprocally Formed Allopolyploid. Genetics, 2006, 173, 1599-1611.	2.9	166
25	Reversible Histone Acetylation and Deacetylation Mediate Genome-Wide, Promoter-Dependent and Locus-Specific Changes in Gene Expression During Plant Development. Genetics, 2005, 169, 337-345.	2.9	157
26	Epigenomic and functional analyses reveal roles of epialleles in the loss of photoperiod sensitivity during domestication of allotetraploid cottons. Genome Biology, 2017, 18, 99.	8.8	153
27	Coordinated histone modifications are associated with gene expression variation within and between species. Genome Research, 2011, 21, 590-598.	5.5	140
28	Maternal siRNAs as regulators of parental genome imbalance and gene expression in endosperm of <i>Arabidopsis</i> seeds. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5529-5534.	7.1	133
29	A Pan-plant Protein Complex Map Reveals Deep Conservation and Novel Assemblies. Cell, 2020, 181, 460-474.e14.	28.9	133
30	Big roles for small RNAs in polyploidy, hybrid vigor, and hybrid incompatibility. Current Opinion in Plant Biology, 2012, 15, 154-161.	7.1	132
31	Analysis of gene expression profiles in response to Sclerotinia sclerotiorum in Brassica napus. Planta, 2007, 227, 13-24.	3.2	131
32	Genome-wide analysis reveals rapid and dynamic changes in miRNA and siRNA sequence and expression during ovule and fiber development in allotetraploid cotton (Gossypium hirsutum L.). Genome Biology, 2009, 10, R122.	9.6	128
33	Genomic insights into divergence and dual domestication of cultivated allotetraploid cottons. Genome Biology, 2017, 18, 33.	8.8	128
34	Ploidy and Hybridity Effects on Growth Vigor and Gene Expression in <i> Arabidopsis thaliana </i> > Hybrids and Their Parents. G3: Genes, Genomes, Genetics, 2012, 2, 505-513.	1.8	127
35	Nonadditive Regulation of <i>FRI</i> and <i>FLC</i> Loci Mediates Flowering-Time Variation in Arabidopsis Allopolyploids. Genetics, 2006, 173, 965-974.	2.9	125
36	Duplicate genes increase expression diversity in closely related species and allopolyploids. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2295-2300.	7.1	122

#	Article	IF	Citations
37	<i>cis</i> - and <i>trans</i> -Regulation of miR163 and Target Genes Confers Natural Variation of Secondary Metabolites in Two <i>Arabidopsis</i> Species and Their Allopolyploids Â. Plant Cell, 2011, 23, 1729-1740.	6.6	121
38	The Rice Circadian Clock Regulates Tiller Growth and Panicle Development Through Strigolactone Signaling and Sugar Sensing. Plant Cell, 2020, 32, 3124-3138.	6.6	112
39	Developmental and gene expression analyses of a cotton naked seed mutant. Planta, 2006, 223, 418-432.	3.2	110
40	Natural variation in timing of stress-responsive gene expression predicts heterosis in intraspecific hybrids of Arabidopsis. Nature Communications, 2015, 6, 7453.	12.8	109
41	B-BOX DOMAIN PROTEIN28 Negatively Regulates Photomorphogenesis by Repressing the Activity of Transcription Factor HY5 and Undergoes COP1-Mediated Degradation. Plant Cell, 2018, 30, 2006-2019.	6.6	105
42	Genetic Control of Developmental Changes Induced by Disruption of Arabidopsis Histone Deacetylase 1 (<i>AtHD1</i>) Expression. Genetics, 2003, 165, 399-409.	2.9	105
43	Temporal Shift of Circadian-Mediated Gene Expression and Carbon Fixation Contributes to Biomass Heterosis in Maize Hybrids. PLoS Genetics, 2016, 12, e1006197.	3.5	100
44	Natural variation in nucleolar dominance reveals the relationship between nucleolus organizer chromatin topology and rRNA gene transcription in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11418-11423.	7.1	85
45	RNAi of <i>met1</i> Reduces DNA Methylation and Induces Genome-Specific Changes in Gene Expression and Centromeric Small RNA Accumulation in Arabidopsis Allopolyploids. Genetics, 2008, 178, 1845-1858.	2.9	82
46	Apyrase (Nucleoside Triphosphate-Diphosphohydrolase) and Extracellular Nucleotides Regulate Cotton Fiber Elongation in Cultured Ovules. Plant Physiology, 2010, 152, 1073-1083.	4.8	75
47	Epigenetic perspectives on the evolution and domestication of polyploid plant and crops. Current Opinion in Plant Biology, 2018, 42, 37-48.	7.1	74
48	Metabolomic and transcriptomic insights into how cotton fiber transitions to secondary wall synthesis, represses lignification, and prolongs elongation. BMC Genomics, 2015, 16, 477.	2.8	72
49	The development of an Arabidopsis model system for genome-wide analysis of polyploidy effects. Biological Journal of the Linnean Society, 2004, 82, 689-700.	1.6	69
50	A Role for CHH Methylation in the Parent-of-Origin Effect on Altered Circadian Rhythms and Biomass Heterosis in <i>Arabidopsis</i> Intraspecific Hybrids Â. Plant Cell, 2014, 26, 2430-2440.	6.6	69
51	Polyploidy and small RNA regulation of cotton fiber development. Trends in Plant Science, 2014, 19, 516-528.	8.8	68
52	Both maternally and paternally imprinted genes regulate seed development in rice. New Phytologist, 2017, 216, 373-387.	7.3	67
53	Analysis of Gene Expression in Resynthesized Brassica napus Allopolyploids Using Arabidopsis 70mer Oligo Microarrays. PLoS ONE, 2009, 4, e4760.	2.5	64
54	Single-cell RNA-seq analysis reveals ploidy-dependent and cell-specific transcriptome changes in Arabidopsis female gametophytes. Genome Biology, 2020, 21, 178.	8.8	63

#	Article	IF	Citations
55	From asymmetrical to balanced genomic diversification during rediploidization: Subgenomic evolution in allotetraploid fish. Science Advances, 2020, 6, eaaz7677.	10.3	59
56	External factors accelerate expression divergence between duplicate genes. Trends in Genetics, 2007, 23, 162-166.	6.7	58
57	SCARECROW-LIKE15 interacts with HISTONE DEACETYLASE19 and is essential for repressing the seed maturation programme. Nature Communications, 2015, 6, 7243.	12.8	58
58	Genome-Wide Dosage-Dependent and -Independent Regulation Contributes to Gene Expression and Evolutionary Novelty in Plant Polyploids. Molecular Biology and Evolution, 2015, 32, 2351-2366.	8.9	57
59	Dynamic Roles for Small RNAs and DNA Methylation during Ovule and Fiber Development in Allotetraploid Cotton. PLoS Genetics, 2015, 11, e1005724.	3.5	57
60	Sensitivity of 70-mer oligonucleotides and cDNAs for microarray analysis of gene expression in Arabidopsis and its related species. Plant Biotechnology Journal, 2004, 2, 45-57.	8.3	55
61	Altered chromatin architecture and gene expression during polyploidization and domestication of soybean. Plant Cell, 2021, 33, 1430-1446.	6.6	55
62	Maternal small RNAs mediate spatial-temporal regulation of gene expression, imprinting, and seed development in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2761-2766.	7.1	54
63	Activation of Arabidopsis Seed Hair Development by Cotton Fiber-Related Genes. PLoS ONE, 2011, 6, e21301.	2.5	53
64	Diurnal down-regulation of ethylene biosynthesis mediates biomass heterosis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5606-5611.	7.1	49
65	Near-isogenic cotton germplasm lines that differ in fiber-bundle strength have temporal differences in fiber gene expression patterns as revealed by comparative high-throughput profiling. Theoretical and Applied Genetics, 2010, 120, 1347-1366.	3.6	48
66	Temporal Regulation of the Metabolome and Proteome in Photosynthetic and Photorespiratory Pathways Contributes to Maize Heterosis. Plant Cell, 2020, 32, 3706-3722.	6.6	45
67	RNA Polymerase I Transcription in a Brassica Interspecific Hybrid and Its Progenitors: Tests of Transcription Factor Involvement in Nucleolar Dominance. Genetics, 1999, 152, 451-460.	2.9	45
68	Oligonucleotide Microarray Analysis of the SalA Regulon Controlling Phytotoxin Production by Pseudomonas syringae pv. syringae. Molecular Plant-Microbe Interactions, 2005, 18, 324-333.	2.6	44
69	DNA hypomethylation in tetraploid rice potentiates stress-responsive gene expression for salt tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	44
70	Comparison of <i>Arachis monticola</i> with Diploid and Cultivated Tetraploid Genomes Reveals Asymmetric Subgenome Evolution and Improvement of Peanut. Advanced Science, 2020, 7, 1901672.	11.2	43
71	Concerted genomic and epigenomic changes accompany stabilization of Arabidopsis allopolyploids. Nature Ecology and Evolution, 2021, 5, 1382-1393.	7.8	41
72	Asymmetrical changes of gene expression, small <scp>RNA</scp> s and chromatin in two resynthesized wheat allotetraploids. Plant Journal, 2018, 93, 828-842.	5.7	40

#	Article	IF	CITATIONS
73	Differential sensitivity of the <i>Arabidopsis thaliana</i> transcriptome and enhancers to the effects of genome doubling. New Phytologist, 2010, 186, 194-206.	7.3	39
74	An Epigenetic Role for Disrupted Paternal Gene Expression in Postzygotic Seed Abortion in Arabidopsis Interspecific Hybrids. Molecular Plant, 2015, 8, 1766-1775.	8.3	39
75	Arabidopsis thaliana histone deacetylase 1 (AtHD1) is localized in euchromatic regions and demonstrates histone deacetylase activity in vitro. Cell Research, 2006, 16, 479-488.	12.0	37
76	Wide-Cross Whole-Genome Radiation Hybrid Mapping of Cotton (Gossypium hirsutum L.). Genetics, 2004, 167, 1317-1329.	2.9	35
77	Structure and size variations between 12A and 12D homoeologous chromosomes based on high-resolution cytogenetic map in allotetraploid cotton. Chromosoma, 2010, 119, 255-266.	2.2	32
78	Roles of target site location and sequence complementarity ⟨i⟩in trans⟨/i⟩â€acting siRNA formation in Arabidopsis. Plant Journal, 2012, 69, 217-226.	5.7	32
79	Unstable Transcripts in Arabidopsis Allotetraploids Are Associated with Nonadditive Gene Expression in Response to Abiotic and Biotic Stresses. PLoS ONE, 2011, 6, e24251.	2.5	32
80	Histone Modifications Define Expression Bias of Homoeologous Genomes in Allotetraploid Cotton. Plant Physiology, 2016, 172, 1760-1771.	4.8	30
81	Tandem duplication of the <i>FLC</i> locus and the origin of a new gene in <i>Arabidopsis</i> related species and their functional implications in allopolyploids. New Phytologist, 2010, 186, 228-238.	7.3	29
82	Auxin boost for cotton. Nature Biotechnology, 2011, 29, 407-409.	17.5	29
83	The Expression of Genes Encoding Lipodepsipeptide Phytotoxins by Pseudomonas syringae pv. syringae Is Coordinated in Response to Plant Signal Molecules. Molecular Plant-Microbe Interactions, 2006, 19, 257-269.	2.6	28
84	Rice Interploidy Crosses Disrupt Epigenetic Regulation, Gene Expression, and Seed Development. Molecular Plant, 2018, 11, 300-314.	8.3	27
85	Interactive roles of chromatin regulation and circadian clock function in plants. Genome Biology, 2019, 20, 62.	8.8	26
86	Dynamic and reversible DNA methylation changes induced by genome separation and merger of polyploid wheat. BMC Biology, 2020, 18, 171.	3.8	26
87	Phytohormonal Networks Promote Differentiation of Fiber Initials on Pre-Anthesis Cotton Ovules Grown In Vitro and In Planta. PLoS ONE, 2015, 10, e0125046.	2.5	24
88	Histone H3K27 dimethylation landscapes contribute to genome stability and genetic recombination during wheat polyploidization. Plant Journal, 2021, 105, 678-690.	5.7	24
89	Sub genome anchored physical frameworks of the allotetraploid Upland cotton (Gossypium hirsutum) Tj ETQq1 17, 15274.	0.784314 3.3	4 rgBT /Over 23
90	Diurnal regulation of SDG2 and JMJ14 by circadian clock oscillators orchestrates histone modification rhythms in Arabidopsis. Genome Biology, 2019, 20, 170.	8.8	22

Z JEFFREY CHEN

#	ARTICLE	lF	CITATIONS
91	BAC-End Sequence-Based SNP Mining in Allotetraploid Cotton (<i>Gossypium</i>) Utilizing Resequencing Data, Phylogenetic Inferences, and Perspectives for Genetic Mapping. G3: Genes, Genomes, Genetics, 2015, 5, 1095-1105.	1.8	20
92	Small RNAs mediate transgenerational inheritance of genome-wide trans-acting epialleles in maize. Genome Biology, 2022, 23, 53.	8.8	19
93	RNAiâ€mediated downâ€regulation of <i>DCL1</i> and <i>AGO1</i> induces developmental changes in resynthesized <i>Arabidopsis</i> allotetraploids. New Phytologist, 2010, 186, 207-215.	7.3	15
94	Methods for Genome-Wide Analysis of Gene Expression Changes in Polyploids. Methods in Enzymology, 2005, 395, 570-596.	1.0	13
95	A Longâ€Read Transcriptome Assembly of Cotton (Gossypium hirsutum L.) and Intraspecific Single Nucleotide Polymorphism Discovery. Plant Genome, 2015, 8, eplantgenome2014.10.0068.	2.8	12
96	COP1 SUPPRESSOR 4 promotes seedling photomorphogenesis by repressing <i>CCA1</i> and <i>PIF4</i> expression in <i>Arabidopsis</i> Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11631-11636.	7.1	12
97	Heterologous protein-DNA interactions lead to biased allelic expression of circadian clock genes in interspecific hybrids. Scientific Reports, 2017, 7, 45087.	3.3	10
98	An epigenetic basis of inbreeding depression in maize. Science Advances, 2021, 7, .	10.3	10
99	Transcriptome analysis of extant cotton progenitors revealed tetraploidization and identified genome-specific single nucleotide polymorphism in diploid and allotetraploid cotton. BMC Research Notes, 2014, 7, 493.	1.4	9
100	LCM and RNA-seq analyses revealed roles of cell cycle and translational regulation and homoeolog expression bias in cotton fiber cell initiation. BMC Genomics, 2021, 22, 309.	2.8	7
101	Detecting Differential Expression of Parental or Progenitor Alleles in Genetic Hybrids and Allopolyploids. Methods in Enzymology, 2005, 395, 554-569.	1.0	4