Ingo Gregor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3245421/publications.pdf Version: 2024-02-01

INCO CRECOR

#	Article	IF	CITATIONS
1	Two-Focus Fluorescence Correlation Spectroscopy: A New Tool for Accurate and Absolute Diffusion Measurements. ChemPhysChem, 2007, 8, 433-443.	2.1	312
2	Performance of Fluorescence Correlation Spectroscopy for Measuring Diffusion and Concentration. ChemPhysChem, 2005, 6, 2324-2336.	2.1	204
3	Multi-target spectrally resolved fluorescence lifetime imaging microscopy. Nature Methods, 2016, 13, 257-262.	19.0	190
4	Photoluminescence of Carbon Nanodots: Dipole Emission Centers and Electron–Phonon Coupling. Nano Letters, 2014, 14, 5656-5661.	9.1	187
5	Art and Artefacts of Fluorescence Correlation Spectroscopy. Current Pharmaceutical Biotechnology, 2004, 5, 155-161.	1.6	177
6	Image Analysis of Defocused Single-Molecule Images for Three-Dimensional Molecule Orientation Studies. Journal of Physical Chemistry A, 2004, 108, 6836-6841.	2.5	173
7	Fast calculation of fluorescence correlation data with asynchronous time-correlated single-photon counting. Optics Express, 2003, 11, 3583.	3.4	138
8	Metal-induced energy transfer for live cell nanoscopy. Nature Photonics, 2014, 8, 124-127.	31.4	132
9	Super-Resolution Optical Fluctuation Bio-Imaging with Dual-Color Carbon Nanodots. Nano Letters, 2016, 16, 237-242.	9.1	122
10	Optical Saturation in Fluorescence Correlation Spectroscopy under Continuous-Wave and Pulsed Excitation. ChemPhysChem, 2005, 6, 164-170.	2.1	103
11	Quantifying the Diffusion of Membrane Proteins and Peptides in Black Lipid Membranes with 2-Focus Fluorescence Correlation Spectroscopy. Biophysical Journal, 2013, 105, 455-462.	0.5	99
12	Using fluorescence lifetime for discriminating detector afterpulsing in fluorescence-correlation spectroscopy. Review of Scientific Instruments, 2005, 76, 033102.	1.3	91
13	The rate of change in Ca2+ concentration controls sperm chemotaxis. Journal of Cell Biology, 2012, 196, 653-663.	5.2	88
14	Enhanced dimerization drives ligand-independent activity of mutant epidermal growth factor receptor in lung cancer. Molecular Biology of the Cell, 2015, 26, 4087-4099.	2.1	79
15	Prp2-mediated protein rearrangements at the catalytic core of the spliceosome as revealed by dcFCCS. Rna, 2012, 18, 1244-1256.	3.5	75
16	Time-resolved methods in biophysics. 3. Fluorescence lifetime correlation spectroscopy. Photochemical and Photobiological Sciences, 2007, 6, 13-18.	2.9	66
17	Graphene-based metal-induced energy transfer for sub-nanometre optical localization. Nature Photonics, 2019, 13, 860-865.	31.4	66
18	Rapid nonlinear image scanning microscopy. Nature Methods, 2017, 14, 1087-1089.	19.0	62

#	Article	IF	CITATIONS
19	Dead-time optimized time-correlated photon counting instrument with synchronized, independent timing channels. Review of Scientific Instruments, 2007, 78, 033106.	1.3	60
20	Molecular dissection of step 2 catalysis of yeast pre-mRNA splicing investigated in a purified system. Rna, 2013, 19, 902-915.	3.5	60
21	Defocused imaging of quantum-dot angular distribution of radiation. Applied Physics Letters, 2005, 87, 101103.	3.3	57
22	Measuring rotational diffusion of macromolecules by fluorescence correlation spectroscopy. Photochemical and Photobiological Sciences, 2010, 9, 627-636.	2.9	51
23	Image scanning microscopy. Current Opinion in Chemical Biology, 2019, 51, 74-83.	6.1	51
24	Exploring Fluorescence Antibunching in Solution To Determine the Stoichiometry of Molecular Complexes. Analytical Chemistry, 2007, 79, 4040-4049.	6.5	49
25	Nanocavityâ€Based Determination of Absolute Values of Photoluminescence Quantum Yields. ChemPhysChem, 2013, 14, 505-513.	2.1	49
26	Singleâ€Molecule Metalâ€Induced Energy Transfer (smMIET): Resolving Nanometer Distances at the Singleâ€Molecule Level. ChemPhysChem, 2014, 15, 705-711.	2.1	49
27	Dead-time correction of fluorescence lifetime measurements and fluorescence lifetime imaging. Optics Express, 2016, 24, 9429.	3.4	49
28	Ligand Binding Induces a Conformational Change in ifnar1 that Is Propagated to Its Membrane-Proximal Domain. Journal of Molecular Biology, 2008, 377, 725-739.	4.2	48
29	Cell–Substrate Dynamics of the Epithelial-to-Mesenchymal Transition. Nano Letters, 2017, 17, 3320-3326.	9.1	48
30	Fast Biosynthesis of GFP Molecules: A Singleâ€Molecule Fluorescence Study. Angewandte Chemie - International Edition, 2009, 48, 1758-1761.	13.8	46
31	Ultra-stable and versatile widefield cryo-fluorescence microscope for single-molecule localization with sub-nanometer accuracy. Optics Express, 2015, 23, 3770.	3.4	45
32	Charge-Driven Fluorescence Blinking in Carbon Nanodots. Journal of Physical Chemistry Letters, 2017, 8, 5751-5757.	4.6	43
33	Axial Colocalization of Single Molecules with Nanometer Accuracy Using Metal-Induced Energy Transfer. Nano Letters, 2018, 18, 2616-2622.	9.1	43
34	Three-Dimensional Reconstruction of Nuclear Envelope Architecture Using Dual-Color Metal-Induced Energy Transfer Imaging. ACS Nano, 2017, 11, 11839-11846.	14.6	42
35	Fourier interpolation stochastic optical fluctuation imaging. Optics Express, 2015, 23, 16154.	3.4	40
36	Wide-Field Fluorescence Lifetime Imaging of Single Molecules. Journal of Physical Chemistry A, 2020, 124, 3494-3500.	2.5	39

#	Article	lF	CITATIONS
37	Simultaneous Measurement of the Three-Dimensional Orientation of Excitation and Emission Dipoles. Physical Review Letters, 2015, 115, 173002.	7.8	38
38	Fluorescence lifetime correlation spectroscopy: Basics and applications. Methods, 2018, 140-141, 32-39.	3.8	38
39	Observing Proteins as Single Molecules Encapsulated in Surfaceâ€Tethered Polymeric Nanocontainers. ChemBioChem, 2009, 10, 702-709.	2.6	37
40	Temporal sampling, resetting, and adaptation orchestrate gradient sensing in sperm. Journal of Cell Biology, 2012, 198, 1075-1091.	5.2	37
41	Translational Diffusion and Interaction of a Photoreceptor and Its Cognate Transducer Observed in Giant Unilamellar Vesicles by Using Dualâ€Focus FCS. ChemBioChem, 2009, 10, 1823-1829.	2.6	33
42	Statistical Analysis of Diffusion Coefficient Determination by Fluorescence Correlation Spectroscopy. Journal of Fluorescence, 2005, 15, 415-422.	2.5	32
43	Graphene- and metal-induced energy transfer for single-molecule imaging and live-cell nanoscopy with (sub)-nanometer axial resolution. Nature Protocols, 2021, 16, 3695-3715.	12.0	30
44	Photoactivation of Luminescent Centers in Single SiO2 Nanoparticles. Nano Letters, 2016, 16, 4312-4316.	9.1	29
45	Electrodynamic Coupling of Electric Dipole Emitters to a Fluctuating Mode Density within a Nanocavity. Physical Review Letters, 2012, 108, 163002.	7.8	28
46	Measuring large numerical apertures by imaging the angular distribution of radiation of fluorescing molecules. Optics Express, 2005, 13, 9409.	3.4	27
47	Photon Yield Enhancement of Red Fluorophores at Cryogenic Temperatures. ChemPhysChem, 2018, 19, 1774-1780.	2.1	27
48	Dual-color metal-induced and Förster resonance energy transfer for cell nanoscopy. Molecular Biology of the Cell, 2018, 29, 846-851.	2.1	26
49	Three-dimensional single-molecule localization with nanometer accuracy using Metal-Induced Energy Transfer (MIET) imaging. Journal of Chemical Physics, 2018, 148, 204201.	3.0	26
50	Structural myelin defects are associated with low axonal ATP levels but rapid recovery from energy deprivation in a mouse model of spastic paraplegia. PLoS Biology, 2020, 18, e3000943.	5.6	26
51	Quantum Yield Measurement in a Multicolor Chromophore Solution Using a Nanocavity. Nano Letters, 2013, 13, 1348-1351.	9.1	25
52	Fluorescence lifetime DNA-PAINT for multiplexed super-resolution imaging of cells. Communications Biology, 2022, 5, 38.	4.4	25
53	MD Simulations and FRET Reveal an Environment-Sensitive Conformational Plasticity of Importin-β. Biophysical Journal, 2015, 109, 277-286.	0.5	23
54	Atg21 organizes Atg8 lipidation at the contact of the vacuole with the phagophore. Autophagy, 2021, 17, 1458-1478.	9.1	23

#	Article	IF	CITATIONS
55	Probing Protein Conformations by in Situ Non-Covalent Fluorescence Labeling. Bioconjugate Chemistry, 2009, 20, 41-46.	3.6	22
56	Quantifying Microsecond Transition Times Using Fluorescence Lifetime Correlation Spectroscopy. Journal of Physical Chemistry Letters, 2017, 8, 6022-6028.	4.6	22
57	Focusing astigmatic Gaussian beams through optical systems with a high numerical aperture. Optics Letters, 2005, 30, 2527.	3.3	20
58	Metal-induced energy transfer. Nanophotonics, 2019, 8, 1689-1699.	6.0	20
59	Single-Molecule Fluorescence Lifetime Imaging Using Wide-Field and Confocal-Laser Scanning Microscopy: A Comparative Analysis. Nano Letters, 2022, 22, 6454-6461.	9.1	20
60	Imaging properties of supercritical angle fluorescence optics. Optics Express, 2011, 19, 8011.	3.4	19
61	Absolute Photoluminescence Quantum Yield Measurement in a Complex Nanoscopic System with Multiple Overlapping States. Journal of Physical Chemistry Letters, 2014, 5, 1198-1202.	4.6	18
62	Probing of protein localization and shuttling in mitochondrial microcompartments by FLIM with sub-diffraction resolution. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1290-1299.	1.0	18
63	Absolute quantum yield measurements of fluorescent proteins using a plasmonic nanocavity. Communications Biology, 2020, 3, 627.	4.4	15
64	Fluorescence polarization filtering for accurate single molecule localization. APL Photonics, 2020, 5, .	5.7	14
65	Precise fluorescence measurement for determination of photophysical properties of dyes. Chemical Physics, 2001, 272, 185-197.	1.9	13
66	Doubling the resolution of a confocal spinning-disk microscope using image scanning microscopy. Nature Protocols, 2021, 16, 164-181.	12.0	13
67	Photoluminescence of a single quantum emitter in a strongly inhomogeneous chemical environment. Physical Chemistry Chemical Physics, 2015, 17, 14994-15000.	2.8	11
68	Quantum Yield Measurements of Fluorophores in Lipid Bilayers Using a Plasmonic Nanocavity. Journal of Physical Chemistry Letters, 2017, 8, 1472-1475.	4.6	11
69	Pattern-Based Linear Unmixing for Efficient and Reliable Analysis of Multicomponent TCSPC Data. Springer Series on Fluorescence, 2014, , 241-263.	0.8	10
70	Excitation and Emission Transition Dipoles of Type-II Semiconductor Nanorods. Nano Letters, 2019, 19, 1695-1700.	9.1	10
71	Dual-Focus Fluorescence Correlation Spectroscopy. Methods in Enzymology, 2013, 518, 175-204.	1.0	9
72	Monomerization of the photoconvertible fluorescent protein SAASoti by rational mutagenesis of single amino acids. Scientific Reports, 2018, 8, 15542.	3.3	8

#	Article	IF	CITATIONS
73	Multi-target immunofluorescence by separation of antibody cross-labelling via spectral-FLIM-FRET. Scientific Reports, 2020, 10, 3820.	3.3	8
74	The fast polarization modulation based dual-focus fluorescence correlation spectroscopy. Optics Express, 2014, 22, 885.	3.4	7
75	Accurate Diffusion Coefficients of Organosoluble Reference Dyes in Organic Media Measured by Dual-Focus Fluorescence Correlation Spectroscopy. ACS Nano, 2015, 9, 7360-7373.	14.6	7
76	Single-molecule confinement with uniform electrodynamic nanofluidics. Lab on A Chip, 2020, 20, 3249-3257.	6.0	6
77	Fluorescence fluctuation analysis reveals PpV dependent Cdc25 protein dynamics in living embryos. PLoS Genetics, 2020, 16, e1008735.	3.5	6
78	Art and artifacts of fluorescence correlation spectroscopy. , 2005, , .		5
79	Feedback-controlled electro-kinetic traps for single-molecule spectroscopy. Pramana - Journal of Physics, 2014, 82, 121-134.	1.8	5
80	Efficient solver for a special class of convection-diffusion problems. Physics of Fluids, 2019, 31, 023606.	4.0	5
81	Electroviscous effect for a confined nanosphere in solution. Physical Review E, 2020, 102, 042607.	2.1	5
82	Efficient modeling of three-dimensional convection–diffusion problems in stationary flows. Physics of Fluids, 2020, 32, .	4.0	5
83	Fast algorithms for the analysis of spectral FLIM data. , 2011, , .		4
84	Carbon Dots for Studying Muscle Architecture. ACS Applied Nano Materials, 2019, 2, 7466-7472.	5.0	4
85	Opto-Electrostatic Determination of Nucleic Acid Double-Helix Dimensions and the Structure of the Molecule–Solvent Interface. Macromolecules, 2022, 55, 6200-6210.	4.8	4
86	Instant three-color multiplane fluorescence microscopy. Biophysical Reports, 2021, 1, 100001.	1.2	3
87	Laser-raster spectrometer for time-resolved recording of transient absorption. Applied Optics, 1999, 38, 7468.	2.1	1
88	Measuring precise diffusion coefficients with two-focus fluorescence correlation spectroscopy. , 2006, 6092, 6.		1
89	Analytical approximations of the diffusive dispersion in fluid flows. Europhysics Letters, 2014, 108, 40007.	2.0	1
90	Metal-Induced Energy Transfer. Springer Series on Fluorescence, 2014, , 265-281.	0.8	1

#	Article	IF	CITATIONS
91	Single-Molecule Transition Dipole Imaging. Springer Theses, 2017, , 87-143.	0.1	1
92	Dual-Color Metal-Induced Energy Transfer (MIET) Imaging for Three-Dimensional Reconstruction of Nuclear Envelope Architecture. Methods in Molecular Biology, 2020, 2175, 33-45.	0.9	1
93	Measuring Photophysical Transition Rates with Fluorescence Correlation Spectroscopy and Antibunching. Journal of Physical Chemistry Letters, 2022, 13, 4823-4830.	4.6	1
94	Monitoring of small conformational changes by high-precision measurements of hydrodynamic radius with 2-focus fluorescence correlation spectroscopy (2fFCS). , 2007, , .		0
95	Dual-Focus Confocal Microscopy for Flow and Brightness Measurements. Biophysical Journal, 2010, 98, 586a.	0.5	0
96	Fast Biosynthesis of GFP Molecules - A Single Molecule Fluorescence Study. Biophysical Journal, 2010, 98, 259a-260a.	0.5	0
97	Dual-Focus Fluorescence Correlation Spectroscopy: Measuring Translational and Rotational Diffusion of Biomolecules. Biophysical Journal, 2010, 98, 586a.	0.5	0
98	Single-Molecule Fluorescence Spectroscopy of the Structure and Dynamics of the Spliceosomal Complex. Biophysical Journal, 2012, 102, 47a.	0.5	0
99	Complementation Activated Light Microscopy for Nanometer Accuracy Single-Molecule Targeting and Tracking in Cells and Living Animals. Biophysical Journal, 2012, 102, 181a.	0.5	0
100	Single-molecule fluorescence inside solid-state nanochannels. , 2014, , .		0
101	The rate of change in Ca ²⁺ concentration controls sperm chemotaxis. Journal of General Physiology, 2012, 139, i2-i2.	1.9	0
102	Discussion and Outlook. Springer Theses, 2017, , 145-158.	0.1	0
103	metal-induced energy transfer (MIET) (Conference Presentation). , 2017, , .		0
104	Multi-target immunofluorescence using spectral FLIM-FRET for separation of undesirable antibody cross-labeling. , 2019, , .		0
105	Modeling charge separation in charged nanochannels for single-molecule electrometry. Journal of Chemical Physics, 2022, 156, 105104.	3.0	0
106	Fluorescence fluctuation analysis reveals PpV dependent Cdc25 protein dynamics in living embryos. , 2020, 16, e1008735.		0
107	Fluorescence fluctuation analysis reveals PpV dependent Cdc25 protein dynamics in living embryos. , 2020, 16, e1008735.		0
108	Fluorescence fluctuation analysis reveals PpV dependent Cdc25 protein dynamics in living embryos. , 2020, 16, e1008735.		0

#	Article	IF	CITATIONS
109	Fluorescence fluctuation analysis reveals PpV dependent Cdc25 protein dynamics in living embryos. , 2020, 16, e1008735.		0