
Alessandro M Michetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3245381/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Environmental effects caused by the Mw 8.2, September 8, 2017, and Mw 7.4, June 23, 2020, Chiapas-Oaxaca (Mexico) subduction events: Comparison of large intraslab and interface earthquakes. Quaternary International, 2023, 651, 62-76.	1.5	6
2	Fault rupture and aseismic creep accompanying the December 26, 2018, Mw 4.9 Fleri earthquake (Mt.) Tj ETQ International, 2023, 651, 25-41.	q0 0 0 rgBT 1.5	/Overlock 10 7
3	Geochemical Markers as a Tool for the Characterization of a Multi-Layer Urban Aquifer: The Case Study of Como (Northern Italy). Water (Switzerland), 2022, 14, 124.	2.7	7
4	40 Years Later: New Perspectives on the 23 November 1980, Ms 6.9, Irpinia-Lucania Earthquake. Geosciences (Switzerland), 2022, 12, 173.	2.2	3
5	Fifteen years of Environmental Seismic Intensity (ESI-07) scale: Dataset compilation and insights from empirical regressions. Quaternary International, 2022, 625, 107-119.	1.5	9
6	The 2017, MD = 4.0, Casamicciola Earthquake: ESI-07 Scale Evaluation and Implications for the Source Model. Geosciences (Switzerland), 2021, 11, 44.	2.2	17
7	Subsidence in Como historic centre (northern Italy): Assessment of building vulnerability combining hydrogeological and stratigraphic features, Cosmo-SkyMed InSAR and damage data. International Journal of Disaster Risk Reduction, 2021, 56, 102115.	3.9	20
8	Joint Interpretation of Geophysical Results and Geological Observations for Detecting Buried Active Faults: The Case of the "ll Lago―Plain (Pettoranello del Molise, Italy). Remote Sensing, 2021, 13, 1555.	4.0	6
9	Effects of Pleistocene to Holocene seismicity on the landforms and fluvial-lacustrine sequences of the Ixtlahuaca paleobasin, and their possible relation with the Acambay graben: Implications for the seismic hazard assessment of central Mexico. Journal of South American Earth Sciences, 2021, 110, 103336.	1.4	2
10	Use of UAV-based photogrammetry products for semi-automatic detection and classification of asphalt road damage in landslide-affected areas. Engineering Geology, 2021, 294, 106363.	6.3	33
11	Photographic Reportage on the Rebuilding after the Irpinia-Basilicata 1980 Earthquake (Southern) Tj ETQq1 1	0.78 <u>43</u> 14 rş	gBT ₄ /Overlock
12	Variable fault tip propagation rates affected by near-surface lithology and implications for fault displacement hazard assessment. Journal of Structural Geology, 2020, 130, 103914.	2.3	17
13	Morphotectonics and late Quaternary seismic stratigraphy of Lake Garda (Northern Italy). Geomorphology, 2020, 371, 107427.	2.6	14
14	The Midâ€eighth Century CE Surface Faulting Along the Dead Sea Fault at Tiberias (Sea of Galilee, Israel). Tectonics, 2020, 39, e2020TC006186.	2.8	5
15	Towards the Understanding of Hydrogeochemical Seismic Responses in Karst Aquifers: A Retrospective Meta-Analysis Focused on the Apennines (Italy). Minerals (Basel, Switzerland), 2020, 10, 1058.	2.0	13
16	Regression Analysis of Subsidence in the Como Basin (Northern Italy): New Insights on Natural and Anthropic Drivers from InSAR Data. Remote Sensing, 2020, 12, 2931.	4.0	5
17	Developing the First Intensity Prediction Equation Based on the Environmental Scale Intensity: A Case Study from Strong Normal-Faulting Earthquakes in the Italian Apennines. Seismological Research Letters, 2020, 91, 2611-2623.	1.9	8
18	LINKING FIELD DATA, STRESS MODELLING AND COSMOGENIC ANALYSES TO UNDERSTAND FAULT INTERACTION AND HISTORICAL EARTHQUAKES IN THE ITALIAN APENNINES. , 2020, , .		0

#	Article	IF	CITATIONS
19	Landslides Triggered by the 2016 Mw 7.8 Pedernales, Ecuador Earthquake: Correlations with ESI-07 Intensity, Lithology, Slope and PGA-h. Geosciences (Switzerland), 2019, 9, 371.	2.2	20
20	Slip on a mapped normal fault for the 28th December 1908 Messina earthquake (Mw 7.1) in Italy. Scientific Reports, 2019, 9, 6481.	3.3	25
21	Lakes as paleoseismic records in a seismically-active, low-relief area (Rieti Basin, central Italy). Quaternary Science Reviews, 2019, 211, 186-207.	3.0	12
22	A database of the coseismic effects following the 30 October 2016 Norcia earthquake in Central Italy. Scientific Data, 2018, 5, 180049.	5.3	89
23	Earthquake Ground Effects and Intensity of the 16 April 2016 MwÂ7.8 Pedernales, Ecuador, Earthquake: Implications for the Source Characterization of Large Subduction Earthquakes. Bulletin of the Seismological Society of America, 2018, 108, 3384-3397.	2.3	24
24	Mechanisms of Earthquakeâ€Induced Chemical and Fluid Transport to Carbonate Groundwater Springs After Earthquakes. Water Resources Research, 2018, 54, 5225-5244.	4.2	43
25	Surface ruptures following the 30 October 2016 <i>M</i> _w 6.5 Norcia earthquake, central Italy. Journal of Maps, 2018, 14, 151-160.	2.0	121
26	Dual control of fault intersections on stop-start rupture in the 2016 Central Italy seismic sequence. Earth and Planetary Science Letters, 2018, 500, 1-14.	4.4	100
27	Climatic and anthropogenic forcing of prehistorical vegetation succession and fire dynamics in the Lago di Como area (N-Italy, Insubria). Quaternary Science Reviews, 2017, 161, 45-67.	3.0	4
28	First evidence for Late Pleistocene to Holocene earthquake surface faulting in the Eastern Monferrato Arc (Northern Italy): Geology, pedostratigraphy and structural study of the Pecetto di Valenza site. Quaternary International, 2017, 451, 143-164.	1.5	9
29	Orogen-scale uplift in the central Italian Apennines drives episodic behaviour of earthquake faults. Scientific Reports, 2017, 7, 44858.	3.3	90
30	Earthquake Hazard and the Environmental Seismic Intensity (ESI) Scale. Pure and Applied Geophysics, 2016, 173, 1479-1515.	1.9	60
31	Surface faulting during the August 24, 2016, Central Italy earthquake (Mw 6.0): preliminary results. Annals of Geophysics, 2016, 59, .	1.0	18
32	Geological and Geophysical Approaches for the Definition of the Areas Prone to Liquefaction and for the Identification and Characterization of Paloeliquefaction Phenomena, the Case of the 2012 Emilia Epicentral Area, Italy. , 2015, , 951-955.		5
33	The loess-paleosol sequence at Monte Netto: a record of climate change in the Upper Pleistocene of the central Po Plain, northern Italy. Journal of Soils and Sediments, 2015, 15, 1329-1350.	3.0	43
34	Late Quaternary environmental evolution of the Como urban area (Northern Italy): A multidisciplinary tool for risk management and urban planning. Engineering Geology, 2015, 193, 384-401.	6.3	14
35	Integrating multidisciplinary, multiscale geological and geophysical data to image the Castrovillari fault (Northern Calabria, Italy). Geophysical Journal International, 2015, 203, 1847-1863.	2.4	17
36	Slip distributions on active normal faults measured from LiDAR and field mapping of geomorphic offsets: an example from L'Aquila, Italy, and implications for modelling seismic moment release. Geomorphology, 2015, 237, 130-141.	2.6	66

#	Article	IF	CITATIONS
37	Quaternary geology and paleoseismology in the Fucino and L'Aquila basins. Geological Field Trips, 2015, 8, 1-88.	0.5	3
38	Surface Faulting Hazard in Italy: Towards a First Assessment Based on the ITHACA Database. , 2015, , 1021-1025.		3
39	Intensity Scale ESI 2007 for Assessing Earthquake Intensities. , 2015, , 1-20.		5
40	EEE Catalogue: A Global Database of Earthquake Environmental Effects. , 2015, , 932-944.		1
41	Intensity Scale ESI 2007 for Assessing Earthquake Intensities. , 2015, , 1219-1237.		1
42	Progressive offset and surface deformation along a seismogenic blind thrust in the Po Plain foredeep (Southern Alps, Northern Italy). Journal of Geophysical Research: Solid Earth, 2014, 119, 7701-7721.	3.4	25
43	EEE Catalogue: A Global Database of Earthquake Environmental Effects. , 2014, , 1-14.		0
44	Landslides Induced by Historical and Recent Earthquakes in Central-Southern Apennines (Italy): A Tool for Intensity Assessment and Seismic Hazard. , 2013, , 295-303.		4
45	Active compressional tectonics, Quaternary capable faults, and the seismic landscape of the Po Plain (northern Italy). Annals of Geophysics, 2013, 55, .	1.0	23
46	Relationship between topography, rates of extension and mantle dynamics in the actively-extending Italian Apennines. Earth and Planetary Science Letters, 2012, 325-326, 76-84.	4.4	58
47	Distribution and magnitude of post-seismic deformation of the 2009 L'Aquila earthquake (M6.3) surface rupture measured using repeat terrestrial laser scanning. Geophysical Journal International, 2012, 189, 911-922.	2.4	7
48	Ground effects induced by the 2012 seismic sequence in Emilia: implications for seismic hazard assessment in the Po Plain. Annals of Geophysics, 2012, 55, .	1.0	14
49	Surface Faulting of the 6 April 2009 Mw 6.3 L'Aquila Earthquake in Central Italy. Bulletin of the Seismological Society of America, 2011, 101, 1507-1530.	2.3	64
50	Geological criteria for evaluating seismicity revisited: Forty years of paleoseismic investigations and the natural record of past earthquakes. , 2011, , .		11
51	New stratigraphic and structural evidence for Late Pleistocene surface faulting along the Monte Olimpino Backthrust (Lombardia, N Italy) Rendiconti Online Societa Geologica Italiana, 2011, , .	0.3	2
52	Shallow subsurface structure of the 2009 April 6 Mw 6.3 L'Aquila earthquake surface rupture at Paganica, investigated with ground-penetrating radar. Geophysical Journal International, 2010, 183, 774-790.	2.4	32
53	Partitioned postseismic deformation associated with the 2009 Mw 6.3 L'Aquila earthquake surface rupture measured using a terrestrial laser scanner. Geophysical Research Letters, 2010, 37, .	4.0	50
54	InSAR data as a field guide for mapping minor earthquake surface ruptures: Ground displacements along the Paganica Fault during the 6 April 2009 L'Aquila earthquake. Journal of Geophysical Research, 2010, 115, .	3.3	45

#	Article	IF	CITATIONS
55	Palaeoseismology: historical and prehistorical records of earthquake ground effects for seismic hazard assessment. Geological Society Special Publication, 2009, 316, 1-10.	1.3	45
56	The Muzaffarabad, Pakistan, earthquake of 8 October 2005: surface faulting, environmental effects and macroseismic intensity. Geological Society Special Publication, 2009, 316, 155-172.	1.3	26
57	Ground effects of the 18 October 1992, Murindo earthquake (NW Colombia), using the Environmental Seismic Intensity Scale (ESI 2007) for the assessment of intensity. Geological Society Special Publication, 2009, 316, 123-144.	1.3	18
58	Horizontal strain-rates and throw-rates across breached relay zones, central Italy: Implications for the preservation of throw deficits at points of normal fault linkage. Journal of Structural Geology, 2009, 31, 1145-1160.	2.3	58
59	Capable faulting, environmental effects and seismic landscape in the area affected by the 1997 Umbria–Marche (Central Italy) seismic sequence. Tectonophysics, 2009, 476, 269-281.	2.2	24
60	Active fault-related folding in the epicentral area of the December 25, 1222 (Io=IX MCS) Brescia earthquake (Northern Italy): Seismotectonic implications. Tectonophysics, 2009, 476, 320-335.	2.2	59
61	Introduction: The Dead Sea Rift as a natural laboratory for neotectonics and paleoseismology. Israel Journal of Earth Sciences, 2009, 58, 139-145.	0.3	1
62	10Be exposure ages of a rock avalanche and a late glacial moraine in Alta Valtellina, Italian Alps. Quaternary International, 2008, 190, 136-145.	1.5	64
63	Land subsidence and Late Glacial environmental evolution of the Como urban area (Northern Italy). Quaternary International, 2007, 173-174, 67-86.	1.5	16
64	Synsedimentary deformation of Pleistocene glaciolacustrine deposits in the Albese con Cassano Area (Southern Alps, Northern Italy), and possible implications for paleoseismicity. Sedimentary Geology, 2007, 196, 59-80.	2.1	33
65	Future trends in paleoseismology: Integrated study of the seismic landscape as a vital tool in seismic hazard analyses. Tectonophysics, 2005, 408, 3-21.	2.2	90
66	Fault scarps and deformation rates in Lazio–Abruzzo, Central Italy: Comparison between geological fault slip-rate and GPS data. Tectonophysics, 2005, 408, 147-176.	2.2	112
67	Spatial and temporal variations in growth rates along active normal fault systems: an example from The Lazio–Abruzzo Apennines, central Italy. Journal of Structural Geology, 2004, 26, 339-376.	2.3	302
68	Fault scaling relationships, deformation rates and seismic hazards: an example from the Lazio–Abruzzo Apennines, central Italy. Journal of Structural Geology, 2004, 26, 377-398.	2.3	103
69	Stratigraphic evidence of coseismic faulting and aseismic fault creep from exploratory trenches at Mt. Etna Volcano (Sicily, Italy). , 2002, , .		8
70	Fault slip-rate variations during crustal-scale strain localisation, central Italy. Geophysical Research Letters, 2002, 29, 9-1-9-4.	4.0	51
71	Title is missing!. Surveys in Geophysics, 2002, 23, 529-562.	4.6	54
72	Geological constraints for earthquake faulting studies in the Colfiorito area (central Italy). Journal of Seismology, 2000, 4, 357-364.	1.3	28

#	Article	IF	CITATIONS
73	Ground Effects during the 9 September 1998, Mw = 5.6 Lauria Earthquake and the Seismic Potential of the "Aseismic" Pollino Region in Southern Italy. Seismological Research Letters, 2000, 71, 31-46.	1.9	84
74	First study of fault trench stratigraphy at Mt. Etna volcano, Southern Italy: understanding Holocene surface faulting along the Moscarello fault. Journal of Geodynamics, 2000, 29, 187-210.	1.6	32
75	Ground effects and surface faulting in the September–October 1997 Umbria–Marche (Central Italy) seismic sequence. Journal of Geodynamics, 2000, 29, 535-564.	1.6	44