Saed Mirzadeh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3245207/publications.pdf

Version: 2024-02-01

40 papers

2,067 citations

304743 22 h-index 302126 39 g-index

43 all docs 43 docs citations

times ranked

43

1644 citing authors

#	Article	IF	CITATIONS
1	Tailoring the Radionuclide Encapsulation and Surface Chemistry of La(223Ra)VO4 Nanoparticles for Targeted Alpha Therapy. Journal of Nanotheranostics, 2021, 2, 33-50.	3.1	3
2	Nuclear data for reactor production of 131Ba and 133Ba. Applied Radiation and Isotopes, 2021, 172, 109645.	1.5	1
3	Synthesis and Stability of Actinium-225 Endohedral Fullerenes, ²²⁵ Ac@C ₆₀ . ACS Omega, 2020, 5, 27016-27025.	3.5	3
4	Quantitative encapsulation and retention of ²²⁷ Th and decay daughters in core–shell lanthanum phosphate nanoparticles. Nanoscale, 2020, 12, 9744-9755.	5.6	10
5	Encapsulation and retention of ²²⁵ Ac, ²²³ Ra, ²²⁷ Th, and decay daughters in zircon-type gadolinium vanadate nanoparticles. Radiochimica Acta, 2020, 108, 967-977.	1.2	5
6	203/212Pb Theranostic Radiopharmaceuticals for Image-guided Radionuclide Therapy for Cancer. Current Medicinal Chemistry, 2020, 27, 7003-7031.	2.4	23
7	Gadolinium vanadate nanocrystals as carriers of \hat{l} ±-emitters (225Ac, 227Th) and contrast agents. Journal of Applied Physics, 2019, 125, .	2.5	22
8	Microfluidics-based separation of actinium-225 from radium-225 for medical applications. Separation Science and Technology, 2019, 54, 1994-2002.	2.5	0
9	Measurement of neutron capture cross section of 187W for production of 188W. Applied Radiation and Isotopes, 2019, 148, 191-196.	1.5	2
10	Reactor production of promethium-147. Applied Radiation and Isotopes, 2019, 144, 54-63.	1.5	10
11	Safety and efficacy of targeted alpha therapy with 213Bi-DOTA-substance P in recurrent glioblastoma. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 614-622.	6.4	69
12	Prolonged survival in secondary glioblastoma following local injection of targeted alpha therapy with 213Bi-substance P analogue. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45, 1636-1644.	6.4	75
13	Multifunctional GdVO ₄ :Eu core–shell nanoparticles containing ²²⁵ Ac for targeted alpha therapy and molecular imaging. Journal of Materials Chemistry B, 2018, 6, 7985-7997.	5 . 8	21
14	Synthesis and characterization of intrinsically radiolabeled lanthanide phosphate nanoparticles toward biomedical and environmental applications. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	10
15	Automated cassette-based production of high specific activity [203/212 Pb]peptide-based theranostic radiopharmaceuticals for image-guided radionuclide therapy for cancer. Applied Radiation and Isotopes, 2017, 127, 52-60.	1.5	36
16	Simultaneous Separation of Actinium and Radium Isotopes from a Proton Irradiated Thorium Matrix. Scientific Reports, 2017, 7, 8216.	3.3	34
17	Large scale accelerator production of 225Ac: Effective cross sections for 78–192 MeV protons incident on 232Th targets. Applied Radiation and Isotopes, 2016, 118, 366-374.	1.5	68
18	Reactor production of Thorium-229. Applied Radiation and Isotopes, 2016, 114, 19-27.	1.5	33

#	Article	IF	CITATIONS
19	Synthesis and characterization of lanthanum phosphate nanoparticles as carriers for 223Ra and 225Ra for targeted alpha therapy. Nuclear Medicine and Biology, 2015, 42, 614-620.	0.6	54
20	LnPO ₄ Nanoparticles Doped with Ac-225 and Sequestered Daughters for Targeted Alpha Therapy. Cancer Biotherapy and Radiopharmaceuticals, 2014, 29, 34-41.	1.0	40
21	Gold-coated lanthanide phosphate nanoparticles for an ²²⁵ Ac in vivo alpha generator. Radiochimica Acta, 2013, 101, 595-600.	1.2	23
22	Gold Coated Lanthanide Phosphate Nanoparticles for Targeted Alpha Generator Radiotherapy. PLoS ONE, 2013, 8, e54531.	2.5	99
23	LaPO ₄ Nanoparticles Doped with Actinium-225 that Partially Sequester Daughter Radionuclides. Bioconjugate Chemistry, 2011, 22, 766-776.	3.6	96
24	In vivoSPECT/CT imaging and biodistribution using radioactive Cd125mTe/ZnS nanoparticles. Nanotechnology, 2007, 18, 175103.	2.6	40
25	212Pb@C60and Its Water-Soluble Derivatives:Â Synthesis, Stability, and Suitability for Radioimmunotherapy. Journal of the American Chemical Society, 2007, 129, 5131-5138.	13.7	76
26	Production of actinium-225 for alpha particle mediated radioimmunotherapy. Applied Radiation and Isotopes, 2005, 62, 667-679.	1.5	126
27	Biodistribution of 225Ra citrate in mice: retention of daughter radioisotopes in bone. Nuclear Medicine and Biology, 2005, 32, 859-867.	0.6	9
28	Neutron flux characterization of a peripheral target position in the High Flux Isotope Reactor. Applied Radiation and Isotopes, 2003, 59, 63-72.	1.5	14
29	Evaluation of 225Ac for Vascular Targeted Radioimmunotherapy of Lung Tumors. Cancer Biotherapy and Radiopharmaceuticals, 2000, 15, 235-244.	1.0	7 5
30	Thermoseparation of Neutron-Irradiated Tungsten from Re and Os. Industrial & Engineering Chemistry Research, 2000, 39, 3169-3172.	3.7	10
31	In vivo studies of fullerene-based materials using endohedral metallofullerene radiotracers. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 5182-5187.	7.1	302
32	Toward fullerene-based radiopharmaceuticals: high-yield neutron activation of endohedral 165Ho metallofullerenes. Chemical Physics Letters, 1999, 308, 329-336.	2.6	68
33	Metallofullerene drug design. Coordination Chemistry Reviews, 1999, 190-192, 199-207.	18.8	157
34	Comparison of 225actinium chelates: tissue distribution and radiotoxicity. Nuclear Medicine and Biology, 1999, 26, 581-589.	0.6	83
35	Improved in Vivo Stability of Actinium-225 Macrocyclic Complexes. Journal of Medicinal Chemistry, 1999, 42, 2988-2992.	6.4	103
36	Generator-produced alpha-emitters. Applied Radiation and Isotopes, 1998, 49, 345-349.	1.5	54

3

SAED MIRZADEH

#	Article	IF	CITATION
37	Numerical evaluation of the production of radionuclides in a nuclear reactor (Part I). Applied Radiation and Isotopes, 1998, 49, 379-382.	1.5	18
38	Vascular Targeted Radioimmunotherapy with 213Biâ€"An α-Particle Emitter. Nuclear Medicine and Biology, 1998, 25, 241-246.	0.6	67
39	Vascular Targeting for Radioimmunotherapy with 213Bi. Radiochimica Acta, 1997, 79, 87-92.	1.2	10
40	The Chemical Fate of $\langle sup \rangle 212 \langle sup \rangle Bi$ -DOTA Formed by $\hat{l}^2 \langle sup \rangle - \langle sup \rangle Decay$ of $\langle sup \rangle 212 \langle sup \rangle Pb$ (DOTA)2 $\langle sup \rangle - \langle sup \rangle + (sup \rangle Bi$ -Carrier Radiochimica Acta, 1993, 60, 1-10.	1.2	117