
Dietmar Werner Hutmacher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/324477/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Scaffolds in tissue engineering bone and cartilage. Biomaterials, 2000, 21, 2529-2543.	5.7	4,353
2	The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in Polymer Science, 2010, 35, 1217-1256.	11.8	3,051
3	Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials, 2002, 23, 1169-1185.	5.7	1,597
4	25th Anniversary Article: Engineering Hydrogels for Biofabrication. Advanced Materials, 2013, 25, 5011-5028.	11.1	1,522
5	Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. Journal of Biomedical Materials Research Part B, 2001, 55, 203-216.	3.0	1,220
6	Scaffold design and fabrication technologies for engineering tissues $\hat{a} \in $ " state of the art and future perspectives. Journal of Biomaterials Science, Polymer Edition, 2001, 12, 107-124.	1.9	1,213
7	Additive manufacturing of tissues and organs. Progress in Polymer Science, 2012, 37, 1079-1104.	11.8	997
8	Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends in Biotechnology, 2004, 22, 354-362.	4.9	995
9	State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. Journal of Tissue Engineering and Regenerative Medicine, 2007, 1, 245-260.	1.3	835
10	Gelatinâ€Methacrylamide Hydrogels as Potential Biomaterials for Fabrication of Tissueâ€Engineered Cartilage Constructs. Macromolecular Bioscience, 2013, 13, 551-561.	2.1	646
11	Bone Regeneration Based on Tissue Engineering Conceptions — A 21st Century Perspective. Bone Research, 2013, 1, 216-248.	5.4	625
12	Direct Writing By Way of Melt Electrospinning. Advanced Materials, 2011, 23, 5651-5657.	11.1	622
13	Functionalization, preparation and use of cell-laden gelatin methacryloyl–based hydrogels as modular tissue culture platforms. Nature Protocols, 2016, 11, 727-746.	5.5	581
14	Reinforcement of hydrogels using three-dimensionally printed microfibres. Nature Communications, 2015, 6, 6933.	5.8	567
15	Electro-spinning of pure collagen nano-fibres – Just an expensive way to make gelatin?. Biomaterials, 2008, 29, 2293-2305.	5.7	538
16	Bioengineered 3D platform to explore cell–ECM interactions and drug resistance of epithelial ovarian cancer cells. Biomaterials, 2010, 31, 8494-8506.	5.7	533
17	Scaffold development using 3D printing with a starch-based polymer. Materials Science and Engineering C, 2002, 20, 49-56.	3.8	524
18	Design, fabrication and characterization of PCL electrospun scaffolds—a review. Journal of Materials Chemistry, 2011, 21, 9419.	6.7	499

#	Article	IF	CITATIONS
19	Evaluation of polycaprolactone scaffold degradation for 6 months <i>in vitro</i> and <i>in vivo</i> . Journal of Biomedical Materials Research - Part A, 2009, 90A, 906-919.	2.1	455
20	An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials, 2011, 32, 65-74.	5.7	454
21	A comparison of micro CT with other techniques used in the characterization of scaffolds. Biomaterials, 2006, 27, 1362-1376.	5.7	435
22	How smart do biomaterials need to be? A translational science and clinical point of view. Advanced Drug Delivery Reviews, 2013, 65, 581-603.	6.6	429
23	Biodegradable polymers applied in tissue engineering research: a review. Polymer International, 2007, 56, 145-157.	1.6	397
24	A novel 3D mammalian cell perfusion-culture system in microfluidic channels. Lab on A Chip, 2007, 7, 302.	3.1	392
25	Melt electrospinning today: An opportune time for an emerging polymer process. Progress in Polymer Science, 2016, 56, 116-166.	11.8	381
26	Identification of Common Pathways Mediating Differentiation of Bone Marrow- and Adipose Tissue-Derived Human Mesenchymal Stem Cells into Three Mesenchymal Lineages. Stem Cells, 2007, 25, 750-760.	1.4	377
27	Assessment of bone ingrowth into porous biomaterials using MICRO-CT. Biomaterials, 2007, 28, 2491-2504.	5.7	370
28	Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment. Progress in Polymer Science, 2019, 96, 1-20.	11.8	366
29	Dynamics of <i>in vitro</i> polymer degradation of polycaprolactone-based scaffolds: accelerated versus simulated physiological conditions. Biomedical Materials (Bristol), 2008, 3, 034108.	1.7	365
30	The challenge of establishing preclinical models for segmental bone defect research. Biomaterials, 2009, 30, 2149-2163.	5.7	351
31	A Tissue Engineering Solution for Segmental Defect Regeneration in Load-Bearing Long Bones. Science Translational Medicine, 2012, 4, 141ra93.	5.8	301
32	The correlation of pore morphology, interconnectivity and physical properties of 3D ceramic scaffolds with bone ingrowth. Biomaterials, 2009, 30, 1440-1451.	5.7	297
33	A biomimetic extracellular matrix for cartilage tissue engineering centered on photocurable gelatin, hyaluronic acid and chondroitin sulfate. Acta Biomaterialia, 2014, 10, 214-223.	4.1	291
34	Biomaterials offer cancer research the third dimension. Nature Materials, 2010, 9, 90-93.	13.3	278
35	Tissue Engineering of Articular Cartilage with Biomimetic Zones. Tissue Engineering - Part B: Reviews, 2009, 15, 143-157.	2.5	273
36	Electrospraying, a Reproducible Method for Production of Polymeric Microspheres for Biomedical Applications. Polymers, 2011, 3, 131-149.	2.0	262

#	Article	IF	CITATIONS
37	Melt Electrospinning. Chemistry - an Asian Journal, 2011, 6, 44-56.	1.7	260
38	Fabrication of 3D chitosan–hydroxyapatite scaffolds using a robotic dispensing system. Materials Science and Engineering C, 2002, 20, 35-42.	3.8	245
39	Combining Electrospun Scaffolds with Electrosprayed Hydrogels Leads to Three-Dimensional Cellularization of Hybrid Constructs. Biomacromolecules, 2008, 9, 2097-2103.	2.6	234
40	Concepts of scaffoldâ€based tissue engineering—the rationale to use solid freeâ€form fabrication techniques. Journal of Cellular and Molecular Medicine, 2007, 11, 654-669.	1.6	229
41	Coating of biomaterial scaffolds with the collagen-mimetic peptide GFOGER for bone defect repair. Biomaterials, 2010, 31, 2574-2582.	5.7	222
42	Can tissue engineering concepts advance tumor biology research?. Trends in Biotechnology, 2010, 28, 125-133.	4.9	208
43	Electrospinning and additive manufacturing: converging technologies. Biomaterials Science, 2013, 1, 171-185.	2.6	207
44	A biphasic scaffold design combined with cell sheet technology for simultaneous regeneration of alveolar bone/periodontal ligament complex. Biomaterials, 2012, 33, 5560-5573.	5.7	199
45	Hydrogels as Drug Delivery Systems: A Review of Current Characterization and Evaluation Techniques. Pharmaceutics, 2020, 12, 1188.	2.0	196
46	Combined marrow stromal cell-sheet techniques and high-strength biodegradable composite scaffolds for engineered functional bone grafts. Biomaterials, 2007, 28, 814-824.	5.7	193
47	Evaluation of a hybrid scaffold/cell construct in repair of high-load-bearing osteochondral defects in rabbits. Biomaterials, 2006, 27, 1071-1080.	5.7	192
48	Melt Electrospinning Writing of Highly Ordered Large Volume Scaffold Architectures. Advanced Materials, 2018, 30, e1706570.	11.1	191
49	Repair and regeneration of osteochondral defects in the articular joints. New Biotechnology, 2007, 24, 489-495.	2.7	190
50	The stimulation of healing within a rat calvarial defect by mPCL–TCP/collagen scaffolds loaded with rhBMP-2. Biomaterials, 2009, 30, 2479-2488.	5.7	190
51	Periosteal Cells in Bone Tissue Engineering. Tissue Engineering, 2003, 9, 45-64.	4.9	188
52	Animal models for bone tissue engineering and modelling disease. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	188
53	The three-dimensional vascularization of growth factor-releasing hybrid scaffold of poly (É›-caprolactone)/collagen fibers and hyaluronic acid hydrogel. Biomaterials, 2011, 32, 8108-8117.	5.7	186
54	Development and characterisation of a new bioink for additive tissue manufacturing. Journal of Materials Chemistry B, 2014, 2, 2282.	2.9	182

#	Article	IF	CITATIONS
55	Repair of Calvarial Defects with Customised Tissue-Engineered Bone Grafts II. Evaluation of Cellular Efficiency and Efficacyin Vivo. Tissue Engineering, 2003, 9, 127-139.	4.9	181
56	Repair of Large Articular Osteochondral Defects Using Hybrid Scaffolds and Bone Marrow-Derived Mesenchymal Stem Cells in a Rabbit Model. Tissue Engineering, 2006, 12, 1539-1551.	4.9	181
57	Melt Electrospinning and Its Technologization in Tissue Engineering. Tissue Engineering - Part B: Reviews, 2015, 21, 187-202.	2.5	180
58	Three-Dimensional Bioprinting for Regenerative Dentistry and Craniofacial Tissue Engineering. Journal of Dental Research, 2015, 94, 143S-152S.	2.5	180
59	Computational fluid dynamics for improved bioreactor design and 3D culture. Trends in Biotechnology, 2008, 26, 166-172.	4.9	179
60	Advanced tissue engineering scaffold design for regeneration of the complex hierarchical periodontal structure. Journal of Clinical Periodontology, 2014, 41, 283-294.	2.3	179
61	Multiphasic Scaffolds for Periodontal Tissue Engineering. Journal of Dental Research, 2014, 93, 1212-1221.	2.5	179
62	Novel PCL-based honeycomb scaffolds as drug delivery systems for rhBMP-2. Biomaterials, 2005, 26, 3739-3748.	5.7	178
63	Design and Fabrication of Tubular Scaffolds via Direct Writing in a Melt Electrospinning Mode. Biointerphases, 2012, 7, 13.	0.6	176
64	Gelatine methacrylamide-based hydrogels: An alternative three-dimensional cancer cell culture system. Acta Biomaterialia, 2014, 10, 2551-2562.	4.1	174
65	Multi-parametric hydrogels support 3D inÂvitro bioengineered microenvironment models of tumour angiogenesis. Biomaterials, 2015, 53, 609-620.	5.7	173
66	The Next Frontier in Melt Electrospinning: Taming the Jet. Advanced Functional Materials, 2019, 29, 1904664.	7.8	173
67	Evaluation of Ultra-Thin Poly(ε-Caprolactone) Films for Tissue-Engineered Skin. Tissue Engineering, 2001, 7, 441-455.	4.9	172
68	Comparison of the degradation of polycaprolactone and polycaprolactone–(β-tricalcium phosphate) scaffolds in alkaline medium. Polymer International, 2007, 56, 718-728.	1.6	172
69	Dermal fibroblast infiltration of poly(Îμ-caprolactone) scaffolds fabricated by melt electrospinning in a direct writing mode. Biofabrication, 2013, 5, 025001.	3.7	172
70	Current strategies for cell delivery in cartilage and bone regeneration. Current Opinion in Biotechnology, 2004, 15, 411-418.	3.3	169
71	Osteogenic Induction of Human Bone Marrow-Derived Mesenchymal Progenitor Cells in Novel Synthetic Polymer–Hydrogel Matrices. Tissue Engineering, 2003, 9, 689-702.	4.9	165
72	Analysis of 3D bone ingrowth into polymer scaffolds via micro-computed tomography imaging. Biomaterials, 2004, 25, 4947-4954.	5.7	162

#	Article	IF	CITATIONS
73	In vitro characterization of natural and synthetic dermal matrices cultured with human dermal fibroblasts. Biomaterials, 2004, 25, 2807-2818.	5.7	162
74	Discrepancies between metabolic activity and DNA content as tool to assess cell proliferation in cancer research. Journal of Cellular and Molecular Medicine, 2010, 14, 1003-1013.	1.6	162
75	The Challenge to Measure Cell Proliferation in Two and Three Dimensions. Tissue Engineering, 2005, 11, 182-191.	4.9	152
76	Biologically Inspired Scaffolds for Heart Valve Tissue Engineering via Melt Electrowriting. Small, 2019, 15, e1900873.	5.2	150
77	Examination of the foreign body response to biomaterials by nonlinear intravital microscopy. Nature Biomedical Engineering, 2017, 1, .	11.6	147
78	The Potential Role of Lycopene for the Prevention and Therapy of Prostate Cancer: From Molecular Mechanisms to Clinical Evidence. International Journal of Molecular Sciences, 2013, 14, 14620-14646.	1.8	146
79	In vivo efficacy of bone-marrow-coated polycaprolactone scaffolds for the reconstruction of orbital defects in the pig. Journal of Biomedical Materials Research Part B, 2003, 66B, 574-580.	3.0	144
80	Bone tissue engineering: from bench to bedside. Materials Today, 2012, 15, 430-435.	8.3	144
81	Structural analysis of photocrosslinkable methacryloyl-modified protein derivatives. Biomaterials, 2017, 139, 163-171.	5.7	140
82	Engineering Anisotropic Muscle Tissue using Acoustic Cell Patterning. Advanced Materials, 2018, 30, e1802649.	11.1	140
83	Melt electrospinning of poly(ε-caprolactone) scaffolds: Phenomenological observations associated with collection and direct writing. Materials Science and Engineering C, 2014, 45, 698-708.	3.8	139
84	Effect of culture conditions and calcium phosphate coating on ectopic bone formation. Biomaterials, 2013, 34, 5538-5551.	5.7	138
85	In vitro and in vivo bone formation potential of surface calcium phosphate-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds. Acta Biomaterialia, 2016, 30, 319-333.	4.1	137
86	Human corneal epithelial equivalents constructed on Bombyx mori silk fibroin membranes. Biomaterials, 2011, 32, 5086-5091.	5.7	136
87	Spatiotemporal delivery of bone morphogenetic protein enhances functional repair of segmental bone defects. Bone, 2011, 49, 485-492.	1.4	135
88	Biofabricated soft network composites for cartilage tissue engineering. Biofabrication, 2017, 9, 025014.	3.7	135
89	Differences between in vitro viability and differentiation and in vivo bone-forming efficacy of human mesenchymal stem cells cultured on PCL–TCP scaffolds. Biomaterials, 2010, 31, 7960-7970.	5.7	133
90	Autocrine Fibroblast Growth Factor 2 Increases the Multipotentiality of Human Adipose-Derived Mesenchymal Stem Cells. Stem Cells, 2008, 26, 1598-1608.	1.4	131

#	Article	IF	CITATIONS
91	Neurological heterotopic ossification following spinal cord injury is triggered by macrophageâ€mediated inflammation in muscle. Journal of Pathology, 2015, 236, 229-240.	2.1	131
92	Strategies for Zonal Cartilage Repair using Hydrogels. Macromolecular Bioscience, 2009, 9, 1049-1058.	2.1	130
93	In Vivo Mesenchymal Cell Recruitment by a Scaffold Loaded with Transforming Growth Factor β1 and the Potential for in Situ Chondrogenesis. Tissue Engineering, 2002, 8, 469-482.	4.9	126
94	Engineered silk fibroin protein 3D matrices for in vitro tumor model. Biomaterials, 2011, 32, 2149-2159.	5.7	126
95	Evaluation of a new bioresorbable barrier to facilitate guided bone regeneration around exposed implant threads. International Journal of Oral and Maxillofacial Surgery, 1998, 27, 315-320.	0.7	125
96	A comparative analysis of scaffold material modifications for load-bearing applications in bone tissue engineering. International Journal of Oral and Maxillofacial Surgery, 2006, 35, 928-934.	0.7	124
97	Hyaluronic Acid Enhances the Mechanical Properties of Tissue-Engineered Cartilage Constructs. PLoS ONE, 2014, 9, e113216.	1.1	124
98	The influence of cellular source on periodontal regeneration using calcium phosphate coated polycaprolactone scaffold supported cell sheets. Biomaterials, 2014, 35, 113-122.	5.7	123
99	Translating tissue engineering technology platforms into cancer research. Journal of Cellular and Molecular Medicine, 2009, 13, 1417-1427.	1.6	122
100	Repair of Calvarial Defects with Customized Tissue-Engineered Bone Grafts I. Evaluation of Osteogenesis in a Three-Dimensional Culture System. Tissue Engineering, 2003, 9, 113-126.	4.9	121
101	Degradation and cell culture studies on block copolymers prepared by ring opening polymerization of ?-caprolactone in the presence of poly(ethylene glycol). Journal of Biomedical Materials Research Part B, 2004, 69A, 417-427.	3.0	121
102	Application of micro CT and computation modeling in bone tissue engineering. CAD Computer Aided Design, 2005, 37, 1151-1161.	1.4	121
103	The effect of unlocking RGD-motifs in collagen I on pre-osteoblast adhesion and differentiation. Biomaterials, 2010, 31, 2827-2835.	5.7	121
104	Co-culture of Bone Marrow Fibroblasts and Endothelial Cells on Modified Polycaprolactone Substrates for Enhanced Potentials in Bone Tissue Engineering. Tissue Engineering, 2006, 12, 2521-2531.	4.9	120
105	Polycaprolactone scaffold and reduced rhBMP-7 dose for the regeneration of critical-sized defects in sheep tibiae. Biomaterials, 2013, 34, 9960-9968.	5.7	120
106	Custom-made composite scaffolds for segmental defect repair in long bones. International Orthopaedics, 2011, 35, 1229-1236.	0.9	118
107	The effect of rhBMP-2 on canine osteoblasts seeded onto 3D bioactive polycaprolactone scaffolds. Biomaterials, 2004, 25, 5499-5506.	5.7	115
108	Osteogenic differentiation of mesenchymal progenitor cells in computer designed fibrin-polymer-ceramic scaffolds manufactured by fused deposition modeling. Journal of Materials Science: Materials in Medicine, 2005, 16, 807-819.	1.7	114

#	Article	IF	CITATIONS
109	Silk fibroin in ocular tissue reconstruction. Biomaterials, 2011, 32, 2445-2458.	5.7	114
110	A tissue-engineered humanized xenograft model of human breast cancer metastasis to bone. DMM Disease Models and Mechanisms, 2014, 7, 299-309.	1.2	114
111	Direct writing of chitosan scaffolds using a robotic system. Rapid Prototyping Journal, 2005, 11, 90-97.	1.6	110
112	Fabrication using a rapid prototyping system and in vitro characterization of PEG-PCL-PLA scaffolds for tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2005, 16, 1595-1610.	1.9	108
113	Preliminary study on the adhesion and proliferation of human osteoblasts on starch-based scaffolds. Materials Science and Engineering C, 2002, 20, 27-33.	3.8	105
114	Enhancing structural integrity of hydrogels by using highly organised melt electrospun fibre constructs. European Polymer Journal, 2015, 72, 451-463.	2.6	105
115	Biological performance of a polycaprolactone-based scaffold used as fusion cage device in a large animal model of spinal reconstructive surgery. Biomaterials, 2009, 30, 5086-5093.	5.7	101
116	Mineralized human primary osteoblast matrices as a model system to analyse interactions of prostate cancer cells with the bone microenvironment. Biomaterials, 2010, 31, 7928-7936.	5.7	101
117	Processing of Polycaprolactone and Polycaprolactone-Based Copolymers into 3D Scaffolds, and Their Cellular Responses. Tissue Engineering - Part A, 2009, 15, 3013-3024.	1.6	100
118	Sustained regeneration of high-volume adipose tissue for breast reconstruction using computer aided design and biomanufacturing. Biomaterials, 2015, 52, 551-560.	5.7	98
119	An Integrated Design, Material, and Fabrication Platform for Engineering Biomechanically and Biologically Functional Soft Tissues. ACS Applied Materials & Interfaces, 2017, 9, 29430-29437.	4.0	98
120	Reduced contraction of skin equivalent engineered using cell sheets cultured in 3D matrices. Biomaterials, 2006, 27, 4591-4598.	5.7	97
121	Porous scaffold architecture guides tissue formation. Journal of Bone and Mineral Research, 2012, 27, 1275-1288.	3.1	97
122	Concise Review: Humanized Models of Tumor Immunology in the 21st Century: Convergence of Cancer Research and Tissue Engineering. Stem Cells, 2015, 33, 1696-1704.	1.4	96
123	Tissue Engineered Constructs for Periodontal Regeneration: Current Status and Future Perspectives. Advanced Healthcare Materials, 2018, 7, e1800457.	3.9	96
124	Species-specific homing mechanisms of human prostate cancer metastasis in tissue engineered bone. Biomaterials, 2014, 35, 4108-4115.	5.7	95
125	Flow modelling within a scaffold under the influence of uni-axial and bi-axial bioreactor rotation. Journal of Biotechnology, 2005, 119, 181-196.	1.9	94
126	Comparative study of depth-dependent characteristics of equine and human osteochondral tissue from the medial and lateral femoral condyles. Osteoarthritis and Cartilage, 2012, 20, 1147-1151.	0.6	94

#	Article	IF	CITATIONS
127	Tissue engineered periodontal products. Journal of Periodontal Research, 2016, 51, 1-15.	1.4	94
128	Noninvasive image analysis of 3D construct mineralization in a perfusion bioreactor. Biomaterials, 2007, 28, 2525-2533.	5.7	92
129	The influence of fibrin based hydrogels on the chondrogenic differentiation of human bone marrow stromal cells. Biomaterials, 2010, 31, 38-47.	5.7	92
130	Effect of gelatin source and photoinitiator type on chondrocyte redifferentiation in gelatin methacryloyl-based tissue-engineered cartilage constructs. Journal of Materials Chemistry B, 2019, 7, 1761-1772.	2.9	92
131	Engineering a humanized bone organ model in mice to study bone metastases. Nature Protocols, 2017, 12, 639-663.	5.5	91
132	Melt electrospinning of polycaprolactone and its blends with poly(ethylene glycol). Polymer International, 2010, 59, 1558-1562.	1.6	90
133	A dual-layer silk fibroin scaffold for reconstructing the human corneal limbus. Biomaterials, 2012, 33, 3529-3538.	5.7	90
134	Autologous vs. allogenic mesenchymal progenitor cells for the reconstruction of critical sized segmental tibial bone defects in aged sheep. Acta Biomaterialia, 2013, 9, 7874-7884.	4.1	90
135	Degradation characteristics of poly(ε-caprolactone)-based copolymers and blends. Journal of Applied Polymer Science, 2006, 102, 1681-1687.	1.3	87
136	A novel bioreactor system for biaxial mechanical loading enhances the properties of tissue-engineered human cartilage. Scientific Reports, 2017, 7, 16997.	1.6	87
137	Additive Biomanufacturing: An Advanced Approach for Periodontal Tissue Regeneration. Annals of Biomedical Engineering, 2017, 45, 12-22.	1.3	87
138	3D printed Polycaprolactone scaffolds with dual macro-microporosity for applications in local delivery of antibiotics. Materials Science and Engineering C, 2018, 87, 78-89.	3.8	87
139	Response of Cells on Surface-Induced Nanopatterns:Â Fibroblasts and Mesenchymal Progenitor Cells. Biomacromolecules, 2007, 8, 1530-1540.	2.6	86
140	Cavinâ€1/PTRF alters prostate cancer cellâ€derived extracellular vesicle content and internalization to attenuate extracellular vesicleâ€mediated osteoclastogenesis and osteoblast proliferation. Journal of Extracellular Vesicles, 2014, 3, .	5.5	86
141	Melt electrospinning onto cylinders: effects of rotational velocity and collector diameter on morphology of tubular structures. Polymer International, 2015, 64, 1086-1095.	1.6	86
142	Vitrification as a prospect for cryopreservation of tissue-engineered constructs. Biomaterials, 2007, 28, 1585-1596.	5.7	85
143	Heparan Sulfate Mediates the Proliferation and Differentiation of Rat Mesenchymal Stem Cells. Stem Cells and Development, 2009, 18, 661-670.	1.1	84
144	Periodontal Tissue Engineering with a Multiphasic Construct and Cell Sheets. Journal of Dental Research, 2019, 98, 673-681.	2.5	84

#	Article	IF	CITATIONS
145	Using extracellular matrix for regenerative medicine in the spinal cord. Biomaterials, 2013, 34, 4945-4955.	5.7	83
146	Induction of Ectopic Bone Formation by Using Human Periosteal Cells in Combination with a Novel Scaffold Technology. Cell Transplantation, 2002, 11, 125-138.	1.2	82
147	Elastic cartilage engineering using novel scaffold architectures in combination with a biomimetic cell carrier. Biomaterials, 2003, 24, 4445-4458.	5.7	81
148	Dynamic compression improves biosynthesis of human zonal chondrocytes from osteoarthritis patients. Osteoarthritis and Cartilage, 2012, 20, 906-915.	0.6	81
149	Fabrication and <i>in vitro</i> characterization of bioactive glass composite scaffolds for bone regeneration. Biofabrication, 2013, 5, 045005.	3.7	81
150	Perspectives in Multiphasic Osteochondral Tissue Engineering. Anatomical Record, 2014, 297, 26-35.	0.8	81
151	Microrobotics and MEMS-Based Fabrication Techniques for Scaffold-Based Tissue Engineering. Macromolecular Bioscience, 2005, 5, 477-489.	2.1	80
152	Periosteum tissue engineering in an orthotopic inÂvivo platform. Biomaterials, 2017, 121, 193-204.	5.7	80
153	Scaffold-based bone engineering by using genetically modified cells. Gene, 2005, 347, 1-10.	1.0	79
154	In vitro pre-vascularisation of tissue-engineered constructs A co-culture perspective. Vascular Cell, 2014, 6, 13.	0.2	79
155	Composite Electrospun Scaffolds for Engineering Tubular Bone Grafts. Tissue Engineering - Part A, 2009, 15, 3779-3788.	1.6	78
156	Establishment of a Preclinical Ovine Model for Tibial Segmental Bone Defect Repair by Applying Bone Tissue Engineering Strategies. Tissue Engineering - Part B: Reviews, 2010, 16, 93-104.	2.5	76
157	Single-Cell Force Spectroscopy, an Emerging Tool to Quantify Cell Adhesion to Biomaterials. Tissue Engineering - Part B: Reviews, 2014, 20, 40-55.	2.5	76
158	Developing macroporous bicontinuous materials as scaffolds for tissue engineering. Biomaterials, 2005, 26, 5609-5616.	5.7	75
159	A preclinical large-animal model for the assessment of critical-size load-bearing bone defect reconstruction. Nature Protocols, 2020, 15, 877-924.	5.5	75
160	Phenotypic Characterization of Prostate Cancer LNCaP Cells Cultured within a Bioengineered Microenvironment. PLoS ONE, 2012, 7, e40217.	1.1	75
161	Absolute quantification of gene expression in biomaterials research using real-time PCR. Biomaterials, 2007, 28, 203-210.	5.7	74
162	Biomimetic tubular nanofiber mesh and platelet rich plasma-mediated delivery of BMP-7 for large bone defect regeneration. Cell and Tissue Research, 2012, 347, 603-612.	1.5	74

#	Article	IF	CITATIONS
163	Scaffolds in tissue engineering bone and cartilage. , 2000, , 175-189.		73
164	In vitro bone engineering based on polycaprolactone and polycaprolactone–tricalcium phosphate composites. Polymer International, 2007, 56, 333-342.	1.6	73
165	The Evaluation of a Biphasic Osteochondral Implant Coupled with an Electrospun Membrane in a Large Animal Model. Tissue Engineering - Part A, 2010, 16, 1123-1141.	1.6	73
166	Scaffolds for Growth Factor Delivery as Applied to Bone Tissue Engineering. International Journal of Polymer Science, 2012, 2012, 1-25.	1.2	73
167	Targeted camptothecin delivery via silicon nanoparticles reduces breast cancer metastasis. Biomaterials, 2020, 240, 119791.	5.7	73
168	Effects of scaffold architecture on cranial bone healing. International Journal of Oral and Maxillofacial Surgery, 2014, 43, 506-513.	0.7	72
169	Influences of age and mechanical stability on volume, microstructure, and mineralization of the fracture callus during bone healing: Is osteoclast activity the key to age-related impaired healing?. Bone, 2010, 47, 219-228.	1.4	71
170	Poly(ε-caprolactone) films as a potential substrate for tissue engineering an epidermal equivalent. Materials Science and Engineering C, 2002, 20, 71-75.	3.8	70
171	Viability and adipogenic potential of human adipose tissue processed cell population obtained from pump-assisted and syringe-assisted liposuction. Journal of Dermatological Science, 2005, 37, 169-176.	1.0	70
172	Current developments in multifunctional smart materials for 3D/4D bioprinting. Current Opinion in Biomedical Engineering, 2017, 2, 67-75.	1.8	70
173	Interactions between human osteoblasts and prostate cancer cells in a novel 3D in vitro model. Organogenesis, 2010, 6, 181-188.	0.4	69
174	Improved fabrication of melt electrospun tissue engineering scaffolds using direct writing and advanced electric field control. Biointerphases, 2015, 10, 011006.	0.6	67
175	Transformation of Breast Reconstruction via Additive Biomanufacturing. Scientific Reports, 2016, 6, 28030.	1.6	67
176	<p>Selenium nanoparticles as anti-infective implant coatings for trauma orthopedics against methicillin-resistant Staphylococcus aureus and epidermidis: in vitro and in vivo assessment</p> . International Journal of Nanomedicine, 2019, Volume 14, 4613-4624.	3.3	67
177	Substrate topography: A valuable in vitro tool, but a clinical red herring for in vivo tenogenesis. Acta Biomaterialia, 2015, 27, 3-12.	4.1	66
178	Antimicrobial and Immunomodulatory Surfaceâ€Functionalized Electrospun Membranes for Bone Regeneration. Advanced Healthcare Materials, 2017, 6, 1601345.	3.9	66
179	Polylactides in additive biomanufacturing. Advanced Drug Delivery Reviews, 2016, 107, 228-246.	6.6	63
180	An introduction to biodegradable materials for tissue engineering applications. Annals of the Academy of Medicine, Singapore, 2001, 30, 183-91.	0.2	63

#	Article	IF	CITATIONS
181	Amniotic Fluid Stem Cells Produce Robust Mineral Deposits on Biodegradable Scaffolds. Tissue Engineering - Part A, 2009, 15, 3129-3138.	1.6	62
182	Tissue engineered humanized bone supports human hematopoiesisÂinÂvivo. Biomaterials, 2015, 61, 103-114.	5.7	62
183	Scaffold curvature-mediated novel biomineralization process originates a continuous soft tissue-to-bone interface. Acta Biomaterialia, 2017, 60, 64-80.	4.1	62
184	In vivo evaluation of an ultra-thin polycaprolactone film as a wound dressing. Journal of Biomaterials Science, Polymer Edition, 2007, 18, 925-938.	1.9	61
185	Delayed Minimally Invasive Injection of Allogenic Bone Marrow Stromal Cell Sheets Regenerates Large Bone Defects in an Ovine Preclinical Animal Model. Stem Cells Translational Medicine, 2015, 4, 503-512.	1.6	61
186	Rational Design of Mouse Models for Cancer Research. Trends in Biotechnology, 2018, 36, 242-251.	4.9	61
187	Guided bone regeneration around dental implants in the atrophic alveolar ridge using a bioresorbable barrier. An experimental study in the monkey Clinical Oral Implants Research, 1997, 8, 323-331.	1.9	60
188	PLGA-Based Microparticles for the Sustained Release of BMP-2. Polymers, 2011, 3, 571-586.	2.0	59
189	Paracrine interactions between LNCaP prostate cancer cells and bioengineered bone in 3D in vitro culture reflect molecular changes during bone metastasis. Bone, 2014, 63, 121-131.	1.4	58
190	Endosteal-like extracellular matrix expression on melt electrospun written scaffolds. Acta Biomaterialia, 2017, 52, 145-158.	4.1	58
191	Rational design and fabrication of multiphasic soft network composites for tissue engineering articular cartilage: A numerical model-based approach. Chemical Engineering Journal, 2018, 340, 15-23.	6.6	58
192	The Current Versatility of Polyurethane Three-Dimensional Printing for Biomedical Applications. Tissue Engineering - Part B: Reviews, 2020, 26, 272-283.	2.5	58
193	Decellularized Periodontal Ligament Cell Sheets with Recellularization Potential. Journal of Dental Research, 2014, 93, 1313-1319.	2.5	57
194	Chondrocyte redifferentiation and construct mechanical property development in singleâ€component photocrosslinkable hydrogels. Journal of Biomedical Materials Research - Part A, 2014, 102, 2544-2553.	2.1	56
195	Multiphasic construct studied in an ectopic osteochondral defect model. Journal of the Royal Society Interface, 2014, 11, 20140184.	1.5	56
196	BMP delivery complements the guiding effect of scaffold architecture without altering bone microstructure in critical-sized long bone defects: A multiscale analysis. Acta Biomaterialia, 2015, 23, 282-294.	4.1	55
197	Melt Electrowriting of Complex 3D Anatomically Relevant Scaffolds. Frontiers in Bioengineering and Biotechnology, 2020, 8, 793.	2.0	55
198	Cryoreservation of alginate–fibrin beads involving bone marrow derived mesenchymal stromal cells by vitrification. Biomaterials, 2009, 30, 336-343.	5.7	54

#	Article	IF	CITATIONS
199	A bioengineered 3D ovarian cancer model for the assessment ofÂpeptidase–mediated enhancement of spheroid growth andÂintraperitoneal spread. Biomaterials, 2013, 34, 7389-7400.	5.7	53
200	A bioengineered microenvironment to quantitatively measure the tumorigenic properties of cancer-associated fibroblasts in human prostate cancer. Biomaterials, 2013, 34, 4777-4785.	5.7	53
201	Addressing Patient Specificity in the Engineering of Tumor Models. Frontiers in Bioengineering and Biotechnology, 2019, 7, 217.	2.0	53
202	Printomics: the high-throughput analysis of printing parameters applied to melt electrowriting. Biofabrication, 2019, 11, 025004.	3.7	53
203	Cranioplasty after Trephination using a Novel Biodegradable Burr Hole Cover: Technical Case Report. Operative Neurosurgery, 2006, 58, ONS-E176.	0.4	52
204	Growth of confined cancer spheroids: a combined experimental and mathematical modelling approach. Integrative Biology (United Kingdom), 2013, 5, 597.	0.6	52
205	The influence of anisotropic nano- to micro-topography on <i>in vitro</i> and <i>in vivo</i> osteogenesis. Nanomedicine, 2015, 10, 693-711.	1.7	52
206	Convergence of 3D printed biomimetic wound dressings and adult stem cell therapy. Biomaterials, 2021, 268, 120558.	5.7	52
207	Gelatin Methacryloyl Hydrogels Control the Localized Delivery of Albumin-Bound Paclitaxel. Polymers, 2020, 12, 501.	2.0	51
208	Does seeding density affectin vitro mineral nodules formation in novel composite scaffolds?. Journal of Biomedical Materials Research - Part A, 2006, 78A, 183-193.	2.1	50
209	Enhancement of bone ingrowth into a porous hydroxylapatite-matrix using a resorbable polylactic membrane: An experimental pilot study. Journal of Oral and Maxillofacial Surgery, 1994, 52, 57-63.	0.5	49
210	CAD/CAM-assisted breast reconstruction. Biofabrication, 2011, 3, 034114.	3.7	49
211	Nanofiber Orientation and Surface Functionalization Modulate Human Mesenchymal Stem Cell Behavior <i>In Vitro</i> . Tissue Engineering - Part A, 2014, 20, 398-409.	1.6	49
212	Additive manufacturing in biomedical sciences and the need for definitions and norms. Expert Review of Medical Devices, 2015, 12, 537-543.	1.4	49
213	Simultaneous biaxial drawing of poly (ϵ-caprolactone) films. Polymer, 2000, 41, 5855-5864.	1.8	48
214	Biofabrication of customized bone grafts by combination of additive manufacturing and bioreactor knowhow. Biofabrication, 2014, 6, 035006.	3.7	47
215	Cartilage regeneration using zonal chondrocyte subpopulations: a promising approach or an overcomplicated strategy?. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 669-678.	1.3	47
216	3â€Dimensional functionalized polycaprolactoneâ€hyaluronic acid hydrogel constructs for bone tissue engineering. Journal of Clinical Periodontology, 2017, 44, 428-437.	2.3	47

#	Article	IF	CITATIONS
217	3D printed dual macro-, microscale porous network as a tissue engineering scaffold with drug delivering function. Biofabrication, 2019, 11, 035014.	3.7	47
218	Biomaterials/Scaffolds. Methods in Molecular Medicine, 2007, , 101-124.	0.8	46
219	Long-term effects of hydrogel properties on human chondrocyte behavior. Soft Matter, 2010, 6, 5175.	1.2	46
220	Immunosuppressive properties of mesenchymal stromal cell cultures derived from the limbus of human and rabbit corneas. Cytotherapy, 2014, 16, 64-73.	0.3	46
221	Effects of Runx2 genetic engineering andin vitro maturation of tissue-engineered constructs on the repair of critical size bone defects. Journal of Biomedical Materials Research - Part A, 2006, 76A, 646-655.	2.1	45
222	Cell sourcing for bone tissue engineering: Amniotic fluid stem cells have a delayed, robust differentiation compared to mesenchymal stem cells. Stem Cell Research, 2011, 7, 17-27.	0.3	45
223	Application of a polyelectrolyte complex coacervation method to improve seeding efficiency of bone marrow stromal cells in a 3D culture system. Biomaterials, 2005, 26, 4149-4160.	5.7	44
224	Breast Augmentation and Reconstruction from a Regenerative Medicine Point of View: State of the Art and Future Perspectives. Tissue Engineering - Part B: Reviews, 2017, 23, 281-293.	2.5	44
225	Tissue engineered human prostate microtissues reveal key role of mast cell-derived tryptase in potentiating cancer-associated fibroblast (CAF)-induced morphometric transition in vitro. Biomaterials, 2019, 197, 72-85.	5.7	44
226	Mineralization capacity of Runx2/Cbfa1-genetically engineered fibroblasts is scaffold dependent. Biomaterials, 2006, 27, 5535-5545.	5.7	43
227	Osteogenic and Adipogenic Induction Potential of Human Periodontal Cells. Journal of Periodontology, 2008, 79, 525-534.	1.7	43
228	Intravital microscopy of osteolytic progression and therapy response of cancer lesions in the bone. Science Translational Medicine, 2018, 10, .	5.8	42
229	Melt electrowriting of electroactive poly(vinylidene difluoride) fibers. Polymer International, 2019, 68, 735-745.	1.6	42
230	Nonâ€invasive identification of proteoglycans and chondrocyte differentiation state by Raman microspectroscopy. Journal of Biophotonics, 2013, 6, 205-211.	1.1	41
231	Humanised xenograft models of bone metastasis revisited: novel insights into species-specific mechanisms of cancer cell osteotropism. Cancer and Metastasis Reviews, 2013, 32, 129-145.	2.7	41
232	Mimicking breast cancer-induced bone metastasis in vivo: current transplantation models and advanced humanized strategies. Cancer and Metastasis Reviews, 2014, 33, 721-735.	2.7	41
233	Independent Evaluation of Medical-Grade Bioresorbable Filaments for Fused Deposition Modelling/Fused Filament Fabrication of Tissue Engineered Constructs. Polymers, 2018, 10, 40.	2.0	41
234	Sustained release and osteogenic potential of heparan sulfate-doped fibrin glue scaffolds within a rat cranial model. Journal of Molecular Histology, 2007, 38, 425-433.	1.0	40

#	Article	IF	CITATIONS
235	Colonization and Osteogenic Differentiation of Different Stem Cell Sources on Electrospun Nanofiber Meshes. Tissue Engineering - Part A, 2010, 16, 3219-3230.	1.6	40
236	Priming of endothelial colonyâ€forming cells in a mesenchymal niche improves engraftment and vasculogenic potential by initiating mesenchymal transition orchestrated by NOTCH signaling. FASEB Journal, 2017, 31, 610-624.	0.2	40
237	The effect of decellularized tissue engineered constructs on periodontal regeneration. Journal of Clinical Periodontology, 2018, 45, 586-596.	2.3	40
238	Convergence of Machine Vision and Melt Electrowriting. Advanced Materials, 2021, 33, e2100519.	11.1	40
239	Osteo-maturation of adipose-derived stem cells required the combined action of vitamin D3, β-glycerophosphate, and ascorbic acid. Biochemical and Biophysical Research Communications, 2007, 362, 17-24.	1.0	39
240	A humanized tissue-engineered in vivo model to dissect interactions between human prostate cancer cells and human bone. Clinical and Experimental Metastasis, 2014, 31, 435-446.	1.7	39
241	Controlling microencapsulation and release of micronized proteins using poly(ethylene glycol) and electrospraying. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 87, 366-377.	2.0	39
242	Scaffold-cell bone engineering in a validated preclinical animal model: precursors vs differentiated cell source. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2081-2089.	1.3	39
243	Convergence of scaffold-guided bone regeneration and RIA bone grafting for the treatment of a critical-sized bone defect of the femoral shaft. European Journal of Medical Research, 2020, 25, 70.	0.9	39
244	Spatially Heterogeneous Tubular Scaffolds for In Situ Heart Valve Tissue Engineering Using Melt Electrowriting. Advanced Functional Materials, 2022, 32, .	7.8	39
245	Ovine bone- and marrow-derived progenitor cells and their potential for scaffold-based bone tissue engineering applications in vitro and in vivo. Journal of Tissue Engineering and Regenerative Medicine, 2010, 4, 565-576.	1.3	38
246	Myocyte Enhancer Factor 2C, an Osteoblast Transcription Factor Identified by Dimethyl Sulfoxide (DMSO)-enhanced Mineralization. Journal of Biological Chemistry, 2011, 286, 30071-30086.	1.6	38
247	Customised osteotomy guides and endoprosthetic reconstruction for periacetabular tumours. International Orthopaedics, 2014, 38, 1435-42.	0.9	38
248	Comparison of Human alveolar osteoblasts cultured on polymer-ceramic composite scaffolds and tissue culture plates. International Journal of Oral and Maxillofacial Surgery, 2007, 36, 137-145.	0.7	37
249	SnapShot: Polymer Scaff olds for Tissue Engineering. Biomaterials, 2009, 30, 701-702.	5.7	37
250	Hyaluronan-based heparin-incorporated hydrogels for generation of axially vascularized bioartificial bone tissues: inÂvitro and inÂvivo evaluation in a PLDLLA–TCP–PCL-composite system. Journal of Materials Science: Materials in Medicine, 2011, 22, 1279-1291.	1.7	37
251	Development of a pre-vascularized 3D scaffold-hydrogel composite graft using an arterio-venous loop for tissue engineering applications. Journal of Biomaterials Applications, 2012, 27, 277-289.	1.2	37
252	Effect of Preculture and Loading on Expression of Matrix Molecules, Matrix Metalloproteinases, and Cytokines by Expanded Osteoarthritic Chondrocytes. Arthritis and Rheumatism, 2013, 65, 2356-2367.	6.7	37

#	Article	IF	CITATIONS
253	A 3D tumor microenvironment regulates cell proliferation, peritoneal growth and expression patterns. Biomaterials, 2019, 190-191, 63-75.	5.7	37
254	In vivo tracking of segmental bone defect healing reveals that callus patterning is related to early mechanical stimuli. , 2012, 24, 358-371.		37
255	Flow modeling in a novel non-perfusion conical bioreactor. Biotechnology and Bioengineering, 2007, 97, 1291-1299.	1.7	36
256	Melt Electrospinning Writing of Three-dimensional Poly(ε-caprolactone) Scaffolds with Controllable Morphologies for Tissue Engineering Applications. Journal of Visualized Experiments, 2017, , .	0.2	36
257	Development of perforated microthin poly(ε-caprolactone) films as matrices for membrane tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2004, 15, 683-700.	1.9	35
258	Convergence of regenerative medicine and synthetic biology to develop standardized and validated models of human diseases with clinical relevance. Current Opinion in Biotechnology, 2015, 35, 127-132.	3.3	35
259	The quest for mechanically and biologically functional soft biomaterials via soft network composites. Advanced Drug Delivery Reviews, 2018, 132, 214-234.	6.6	35
260	Mesodermal and neural crest derived ovine tibial and mandibular osteoblasts display distinct molecular differences. Gene, 2013, 525, 99-106.	1.0	34
261	Induced Pluripotent Stem Cells. Journal of Dental Research, 2015, 94, 1508-1515.	2.5	34
262	Preliminary study of a polycaprolactone membrane utilized as epidermal substrate. Journal of Materials Science: Materials in Medicine, 2003, 14, 113-120.	1.7	33
263	Characterization of Osteogenically Induced Adipose Tissue-Derived Precursor Cells in 2-Dimensional and 3-Dimensional Environments. Cells Tissues Organs, 2006, 182, 1-11.	1.3	33
264	The Osteogenic Differentiation of Adipose Tissue-Derived Precursor Cells in a 3D Scaffold/Matrix Environment. Current Drug Discovery Technologies, 2008, 5, 319-327.	0.6	33
265	Vitreous Cryopreservation of Nanofibrous Tissue-Engineered Constructs Generated Using Mesenchymal Stromal Cells. Tissue Engineering - Part C: Methods, 2009, 15, 105-114.	1.1	33
266	Combined expression of KLK4, KLK5, KLK6, and KLK7 by ovarian cancer cells leads to decreased adhesion and paclitaxel-induced chemoresistance. Gynecologic Oncology, 2012, 127, 569-578.	0.6	33
267	Delineating breast cancer cell interactions with engineered bone microenvironments. Journal of Bone and Mineral Research, 2013, 28, 1399-1411.	3.1	33
268	Mesenchymal stem/stromal cells enhance engraftment, vasculogenic and pro-angiogenic activities of endothelial colony forming cells in immunocompetent hosts. Scientific Reports, 2017, 7, 13558.	1.6	33
269	Humanization of bone and bone marrow in an orthotopic site reveals new potential therapeutic targets in osteosarcoma. Biomaterials, 2018, 171, 230-246.	5.7	33

270 Scaffold design and fabrication. , 2008, , 403-454.

#	Article	IF	CITATIONS
271	Scaffold Design and Fabrication. , 2014, , 311-346.		32
272	3D printed lattices as an activation and expansion platform for T cell therapy. Biomaterials, 2017, 140, 58-68.	5.7	32
273	Design and Development of a Three-Dimensional Printing High-Throughput Melt Electrowriting Technology Platform. 3D Printing and Additive Manufacturing, 2019, 6, 82-90.	1.4	32
274	Evaluation of a tissue-engineered membrane-cell construct for guided bone regeneration. International Journal of Oral and Maxillofacial Implants, 2002, 17, 161-74.	0.6	32
275	Evaluation of methods for cultivating limbal mesenchymal stromal cells. Cytotherapy, 2012, 14, 936-947.	0.3	30
276	Biological performance of a polycaprolactone-based scaffold plus recombinant human morphogenetic protein-2 (rhBMP-2) in an ovine thoracic interbody fusion model. European Spine Journal, 2014, 23, 650-657.	1.0	30
277	<i>Runx2</i> Overexpression in Bone Marrow Stromal Cells Accelerates Bone Formation in Critical-Sized Femoral Defects. Tissue Engineering - Part A, 2010, 16, 2795-2808.	1.6	29
278	Sphingosine-1-Phosphate Mediates Proliferation Maintaining the Multipotency of Human Adult Bone Marrow and Adipose Tissue-derived Stem Cells. Journal of Molecular Cell Biology, 2010, 2, 199-208.	1.5	29
279	High performance additive manufactured scaffolds for bone tissue engineering application. Soft Matter, 2011, 7, 8013.	1.2	29
280	Effect of the sterilization method on the properties of Bombyx mori silk fibroin films. Materials Science and Engineering C, 2013, 33, 668-674.	3.8	29
281	Characterisation and evaluation of the regenerative capacity of Stro-4+ enriched bone marrow mesenchymal stromal cells using bovine extracellular matrix hydrogel and a novel biocompatible melt electro-written medical-grade polycaprolactone scaffold. Biomaterials, 2020, 247, 119998.	5.7	29
282	Scaffold-guided bone regeneration in large volume tibial segmental defects. Bone, 2021, 153, 116163.	1.4	29
283	Culturing and characterization of human periodontal ligament fibroblasts—a preliminary study. Materials Science and Engineering C, 2002, 20, 77-83.	3.8	28
284	Microenvironment engineering of osteoblastic bone metastases reveals osteomimicry of patient-derived prostate cancer xenografts. Biomaterials, 2019, 220, 119402.	5.7	28
285	Matrices for tissue-engineered skin. Drugs of Today, 2002, 38, 113.	2.4	28
286	The use of basic fibroblast growth factor (bFGF) for enhancement of bone ingrowth into pyrolized bovine bone. International Journal of Oral and Maxillofacial Surgery, 1995, 24, 181-186.	0.7	27
287	Engineering tubular bone constructs. Journal of Biomechanics, 2007, 40, S73-S79.	0.9	27
288	In vitro and in vivo analysis of co-electrospun scaffolds made of medical grade poly(ε-caprolactone) and porcine collagen. Journal of Biomaterials Science, Polymer Edition, 2008, 19, 693-707.	1.9	27

#	Article	IF	CITATIONS
289	A multiscale road map of cancer spheroids – incorporating experimental and mathematical modelling to understand cancer progression. Journal of Cell Science, 2013, 126, 2761-71.	1.2	27
290	Composites for Delivery of Therapeutics: Combining Melt Electrospun Scaffolds with Loaded Electrosprayed Microparticles. Macromolecular Bioscience, 2014, 14, 202-214.	2.1	27
291	Vascularised bone transfer: History, blood supply and contemporary problems. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2017, 70, 1-11.	0.5	27
292	Assessment of static and perfusion methods for decellularization of PCL membrane-supported periodontal ligament cell sheet constructs. Archives of Oral Biology, 2018, 88, 67-76.	0.8	27
293	Meso-Endothelial Bipotent Progenitors from Human Placenta Display Distinct Molecular and Cellular Identity. Stem Cell Reports, 2018, 10, 890-904.	2.3	27
294	Immune system augmentation <i>via</i> humanization using stem/progenitor cells and bioengineering in a breast cancer model study. International Journal of Cancer, 2018, 143, 1470-1482.	2.3	27
295	Engineering osteoblastic metastases to delineate the adaptive response of androgen-deprived prostate cancer in the bone metastatic microenvironment. Bone Research, 2019, 7, 13.	5.4	27
296	Personalized, Mechanically Strong, and Biodegradable Coronary Artery Stents via Melt Electrowriting. ACS Macro Letters, 2020, 9, 1732-1739.	2.3	27
297	Investigating the effects of preinduction on human adipose-derived precursor cells in an athymic rat model. Differentiation, 2006, 74, 519-529.	1.0	26
298	A collagen network phase improves cell seeding of open-pore structure scaffolds under perfusion. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 183-191.	1.3	26
299	Mechanical and geometrical study of 3D printed Voronoi scaffold design for large bone defects. Materials and Design, 2021, 212, 110224.	3.3	26
300	Regenerative matching axial vascularisation of absorbable 3D-printed scaffold for large bone defects: A first in human series. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2022, 75, 2108-2118.	0.5	26
301	Assimilating cell sheets and hybrid scaffolds for dermal tissue engineering. Journal of Biomedical Materials Research - Part A, 2005, 75A, 425-438.	2.1	25
302	Temporal expression of proteoglycans in the rat limb during bone healing. Gene, 2006, 379, 92-100.	1.0	25
303	Microparticles for Sustained Growth Factor Delivery in the Regeneration of Critically-Sized Segmental Tibial Bone Defects. Materials, 2016, 9, 259.	1.3	25
304	Tissue engineering and regenerative medicine in musculoskeletal oncology. Cancer and Metastasis Reviews, 2016, 35, 475-487.	2.7	25
305	Comparison of early osseointegration of SLA [®] and SLActive [®] implants in maxillary sinus augmentation: a pilot study. Clinical Oral Implants Research, 2017, 28, 1325-1333.	1.9	25
306	Mechanical and in vitro evaluations of composite PLDLLA/TCP scaffolds for bone engineering. Virtual and Physical Prototyping, 2008, 3, 193-197.	5.3	24

#	Article	IF	CITATIONS
307	Design and fabrication of scaffold-based tissue engineering. BioNanoMaterials, 2013, 14, .	1.4	24
308	Additive biomanufacturing of scaffolds for breast reconstruction. Additive Manufacturing, 2019, 30, 100845.	1.7	24
309	Layered Antimicrobial Selenium Nanoparticle–Calcium Phosphate Coating on 3D Printed Scaffolds Enhanced Bone Formation in Critical Size Defects. ACS Applied Materials & Interfaces, 2020, 12, 55638-55648.	4.0	24
310	Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. Journal of Biomedical Materials Research Part B, 2001, 55, 203-216.	3.0	24
311	Advanced Tissue Sciences Inc.: learning from the past, a case study for regenerative medicine. Regenerative Medicine, 2010, 5, 823-835.	0.8	23
312	Can Bone Tissue Engineering Contribute to Therapy Concepts after Resection of Musculoskeletal Sarcoma?. Sarcoma, 2013, 2013, 1-10.	0.7	23
313	Via precise interface engineering towards bioinspired composites with improved 3D printing processability and mechanical properties. Journal of Materials Chemistry B, 2017, 5, 5037-5047.	2.9	23
314	Investigation of microstructural features in regenerating bone using micro computed tomography. Journal of Materials Science: Materials in Medicine, 2004, 15, 529-532.	1.7	22
315	Microassembly Fabrication of Tissue Engineering Scaffolds With Customized Design. IEEE Transactions on Automation Science and Engineering, 2008, 5, 446-456.	3.4	22
316	A Validated Preclinical Animal Model for Primary Bone Tumor Research. Journal of Bone and Joint Surgery - Series A, 2016, 98, 916-925.	1.4	22
317	A Novel 3D Cultured Model for Studying Early Changes in Ageâ€Related Macular Degeneration. Macromolecular Bioscience, 2017, 17, 1700221.	2.1	22
318	Effects of polydopamine coatings on nucleation modes of surface mineralization from simulated body fluid. Scientific Reports, 2020, 10, 14982.	1.6	22
319	Deciphering the Molecular Mechanism of Water Interaction with Gelatin Methacryloyl Hydrogels: Role of Ionic Strength, pH, Drug Loading and Hydrogel Network Characteristics. Biomedicines, 2021, 9, 574.	1.4	22
320	Functional and phenotypic characterization of human keratinocytes expanded in microcarrier culture. Journal of Biomedical Materials Research - Part A, 2009, 88A, 184-194.	2.1	21
321	ATF5, a possible regulator of osteogenic differentiation in human adiposeâ€derived stem cells. Journal of Cellular Biochemistry, 2012, 113, 2744-2753.	1.2	21
322	OpenWorkstation: A modular open-source technology for automated in vitro workflows. HardwareX, 2020, 8, e00152.	1.1	21
323	Convergence of Scaffold-Guided Bone Reconstruction and Surgical Vascularization Strategies—A Quest for Regenerative Matching Axial Vascularization. Frontiers in Bioengineering and Biotechnology, 2019, 7, 448.	2.0	21
324	Tie-2 regulates the stemness and metastatic properties of prostate cancer cells. Oncotarget, 2016, 7, 2572-2584.	0.8	21

#	Article	IF	CITATIONS
325	A Commentary on ?Thermo-responsive polymeric surfaces; control of attachment and detachment of cultured cells? by N. Yamada, T. Okano, H. Sakai, F. Karikusa, Y. Sawasaki, Y. Sakurai (Makromol. Chem.,) Tj ETQq1	ኴመ7843፤	1 4 0gBT /Ov
326	Bioreactor Studies and Computational Fluid Dynamics. Advances in Biochemical Engineering/Biotechnology, 2009, 112, 231-249.	0.6	20
327	Additively Manufactured Device for Dynamic Culture of Large Arrays of 3D Tissue Engineered Constructs. Advanced Healthcare Materials, 2015, 4, 864-873.	3.9	20
328	<i>In vitro</i> disease models 4.0 via automation and high-throughput processing. Biofabrication, 2019, 11, 043002.	3.7	20
329	A clarion call for understanding regulatory processes for additive manufacturing in the health sector. Expert Review of Medical Devices, 2019, 16, 405-412.	1.4	20
330	Radium 223-Mediated Zonal Cytotoxicity of Prostate Cancer in Bone. Journal of the National Cancer Institute, 2019, 111, 1042-1050.	3.0	20
331	Polydopamine coating of uncrosslinked chitosan as an acellular scaffold for full thickness skin grafts. Carbohydrate Polymers, 2020, 245, 116524.	5.1	20
332	In vitro engineering of a bone metastases model allows for study of the effects of antiandrogen therapies in advanced prostate cancer. Science Advances, 2021, 7, .	4.7	20
333	Invention and Business Performance in the Tissue-Engineering Industry. Tissue Engineering, 2003, 9, 1313-1322.	4.9	19
334	Ovine cortical osteoblasts outperform bone marrow cells in an ectopic bone assay. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 831-844.	1.3	19
335	Fetal Endothelial and Mesenchymal Progenitors From the Human Term Placenta: Potency and Clinical Potential. Stem Cells Translational Medicine, 2015, 4, 419-423.	1.6	19
336	A histomorphometric assessment of collagenâ€stabilized anorganic bovine bone mineral in maxillary sinus augmentation – a randomized controlled trial in sheep. Clinical Oral Implants Research, 2016, 27, 734-743.	1.9	19
337	Design and Fabrication of a 3D Scaffold for Tissue Engineering Bone. , 2000, , 152-167.		19
338	New mechanistic insights of integrin \hat{l}^21 in breast cancer bone colonization. Oncotarget, 2015, 6, 332-344.	0.8	19
339	Clinical translation of a patient-specific scaffold-guided bone regeneration concept in four cases with large long bone defects. Journal of Orthopaedic Translation, 2022, 34, 73-84.	1.9	19
340	Near-field effects on coherent anti-Stokes Raman scattering microscopy imaging. Optics Express, 2007, 15, 4118.	1.7	18
341	Comparison of chondrogenesis in static and dynamic environments using a SFF designed and fabricated PCL-PEO scaffold. Virtual and Physical Prototyping, 2008, 3, 209-219.	5.3	18
342	Formalin fixation affects equilibrium partitioning of an ionic contrast agent-microcomputed tomography (EPIC-14/CT) imaging of osteochondral samples. Osteoarthritis and Cartilage, 2010, 18, 1586-1591.	0.6	18

#	Article	IF	CITATIONS
343	A humanised tissueâ€engineered bone model allows speciesâ€specific breast cancerâ€related bone metastasis in vivo. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 494-504.	1.3	18
344	Tuning mechanical reinforcement and bioactivity of 3D printed ternary nanocomposites by interfacial peptide-polymer conjugates. Biofabrication, 2019, 11, 035028.	3.7	18
345	Ultrafast, miniature soft actuators. Multifunctional Materials, 2021, 4, 045001.	2.4	18
346	Induction of ectopic bone formation by using human periosteal cells in combination with a novel scaffold technology. Cell Transplantation, 2002, 11, 125-38.	1.2	18
347	Bone response to unloaded titanium implants in the fibula, iliac crest, and scapula: an animal study in the Yorkshire pig. International Journal of Oral and Maxillofacial Surgery, 2003, 32, 383-389.	0.7	17
348	Nano―to Macroscale Remodeling of Functional Tissueâ€Engineered Bone. Advanced Healthcare Materials, 2013, 2, 546-551.	3.9	17
349	Evaluation of polycaprolactone â^ poly-D,L-lactide copolymer as biomaterial for breast tissue engineering. Polymer International, 2017, 66, 77-84.	1.6	17
350	Kallikreinâ€related peptidase 4 induces cancerâ€associated fibroblast features in prostateâ€derived stromal cells. Molecular Oncology, 2017, 11, 1307-1329.	2.1	17
351	Stromal fibroblasts regulate microvascular-like network architecture in a bioengineered breast tumour angiogenesis model. Acta Biomaterialia, 2020, 114, 256-269.	4.1	17
352	Elucidating the Molecular Mechanisms for the Interaction of Water with Polyethylene Glycol-Based Hydrogels: Influence of Ionic Strength and Gel Network Structure. Polymers, 2021, 13, 845.	2.0	17
353	Tissue Engineering Cartilage with Deep Zone Cytoarchitecture by Highâ€Resolution Acoustic Cell Patterning. Advanced Healthcare Materials, 2022, 11, .	3.9	17
354	Experimental transplantation of hydroxylapatite-bone composite grafts. Journal of Oral and Maxillofacial Surgery, 1995, 53, 46-51.	0.5	16
355	Differentiation potential of mesenchymal progenitor cells following transplantation into calvarial defects. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 11, 132-142.	1.5	16
356	Electrospinning writing with molten poly (ε-caprolactone) from different directions – Examining the effects of gravity. Materials Letters, 2018, 216, 114-118.	1.3	16
357	A Method for Prostate and Breast Cancer Cell Spheroid Cultures Using Gelatin Methacryloyl-Based Hydrogels. Methods in Molecular Biology, 2018, 1786, 175-194.	0.4	16
358	Investigation of Sustained BMP Delivery in the Prevention of Medicationâ€Related Osteonecrosis of the Jaw (MRONJ) in a Rat Model. Macromolecular Bioscience, 2019, 19, e1900226.	2.1	16
359	Humanized bone facilitates prostate cancer metastasis and recapitulates therapeutic effects of zoledronic acid in vivo. Bone Research, 2019, 7, 31.	5.4	16
360	Immunogold FIB‣EM: Combining Volumetric Ultrastructure Visualization with 3D Biomolecular Analysis to Dissect Cell–Environment Interactions. Advanced Materials, 2019, 31, 1900488.	11.1	16

#	Article	IF	CITATIONS
361	An in silico model predicts the impact of scaffold design in large bone defect regeneration. Acta Biomaterialia, 2022, 145, 329-341.	4.1	16
362	Monitoring Healing Progression and Characterizing the Mechanical Environment in Preclinical Models for Bone Tissue Engineering. Tissue Engineering - Part B: Reviews, 2016, 22, 47-57.	2.5	15
363	Humanization of the Prostate Microenvironment Reduces Homing of PC3 Prostate Cancer Cells to Human Tissue-Engineered Bone. Cancers, 2018, 10, 438.	1.7	15
364	Application of an X-ray microscopy technique to evaluate tissue-engineered bone-scaffold constructs. Materials Science and Engineering C, 2002, 20, 9-17.	3.8	14
365	Porcine bone marrow stromal cell differentiation on heparin-adsorbed poly(e-caprolactone)–tricalcium phosphate–collagen scaffolds. Acta Biomaterialia, 2009, 5, 3305-3315.	4.1	14
366	Evolutionary design of bone scaffolds with reference to material selection. International Journal for Numerical Methods in Biomedical Engineering, 2012, 28, 789-800.	1.0	14
367	A Suite of Activity-Based Probes To Dissect the KLK Activome in Drug-Resistant Prostate Cancer. Journal of the American Chemical Society, 2021, 143, 8911-8924.	6.6	14
368	Design, Fabrication and Physical Characterization of Scaffolds Made from Biodegradable Synthetic Polymers in combination with RP Systems based on Melt Extrusion. , 2008, , 261-291.		14
369	Bone Tissue Engineering. , 2011, , 431-456.		14
370	Stage-Specific Embryonic Antigen-4 Is Not a Marker for Chondrogenic and Osteogenic Potential in Cultured Chondrocytes and Mesenchymal Progenitor Cells. Tissue Engineering - Part A, 2013, 19, 1316-1326.	1.6	13
371	Challenges and opportunities in the manufacture and expansion of cells for therapy. Expert Opinion on Biological Therapy, 2017, 17, 1221-1233.	1.4	13
372	A humanized bone microenvironment uncovers HIF2 alpha as a latent marker for osteosarcoma. Acta Biomaterialia, 2019, 89, 372-381.	4.1	13
373	Nipple Reconstruction: A Regenerative Medicine Approach Using 3D-Printed Tissue Scaffolds. Tissue Engineering - Part B: Reviews, 2019, 25, 126-134.	2.5	13
374	The molecular function of kallikreinâ€related peptidase 14 demonstrates a key modulatory role in advanced prostate cancer. Molecular Oncology, 2020, 14, 105-128.	2.1	13
375	Antibacterial Albumin-Tannic Acid Coatings for Scaffold-Guided Breast Reconstruction. Frontiers in Bioengineering and Biotechnology, 2021, 9, 638577.	2.0	13
376	Mesenchymal stem cells in musculoskeletal tissue engineering: a review of recent advances in National University of Singapore. Annals of the Academy of Medicine, Singapore, 2005, 34, 206-12.	0.2	13
377	Gelatin Methacryloyl Hydrogels for the Localized Delivery of Cefazolin. Polymers, 2021, 13, 3960.	2.0	12
378	Hydrogel Microwell Arrays Allow the Assessment of Protease-Associated Enhancement of Cancer Cell Aggregation and Survival. Microarrays (Basel, Switzerland), 2013, 2, 208-227.	1.4	11

#	Article	IF	CITATIONS
379	Insight into characteristic features of cartilage growth plate as a physiological template for bone formation. Journal of Biomedical Materials Research - Part A, 2016, 104, 357-366.	2.1	11
380	Fabrication and Characterization of Decellularized Periodontal Ligament Cell Sheet Constructs. Methods in Molecular Biology, 2017, 1537, 403-412.	0.4	11
381	Effect of plasma immersion ion implantation on polycaprolactone with various molecular weights and crystallinity. Journal of Materials Science: Materials in Medicine, 2018, 29, 5.	1.7	11
382	A 3D-printed biomaterials-based platform to advance established therapy avenues against primary bone cancers. Acta Biomaterialia, 2020, 118, 69-82.	4.1	11
383	Lycopene reduces ovarian tumor growth and intraperitoneal metastatic load. American Journal of Cancer Research, 2017, 7, 1322-1336.	1.4	11
384	Interface of unloaded titanium implants in the iliac crest, fibula, and scapula: a histomorphometric and biomechanical study in the pig. International Journal of Oral and Maxillofacial Implants, 2004, 19, 52-8.	0.6	11
385	Eyes on 3D urrent 3D Biomimetic Disease Concept Models and Potential Applications in Ageâ€Related Macular Degeneration. Advanced Healthcare Materials, 2013, 2, 1056-1062.	3.9	10
386	Establishment and Characterization of an Open Mini-Thoracotomy Surgical Approach to an Ovine Thoracic Spine Fusion Model. Tissue Engineering - Part C: Methods, 2014, 20, 19-27.	1.1	10
387	5.13 Electrospinning With Polymer Melts – State of the Art and Future Perspectives. , 2017, , 217-235.		10
388	Human and mouse bones physiologically integrate in a humanized mouse model while maintaining species-specific ultrastructure. Science Advances, 2020, 6, .	4.7	10
389	An open-source technology platform to increase reproducibility and enable high-throughput production of tailorable gelatin methacryloyl (GelMA) - based hydrogels. Materials and Design, 2021, 204, 109619.	3.3	10
390	Engineering a 3D bone marrow adipose composite tissue loading model suitable for studying mechanobiological questions. Materials Science and Engineering C, 2021, 128, 112313.	3.8	10
391	Technology roadmap for the development of a 3D cell culture workstation for a biomedical industry startup. Technological Forecasting and Social Change, 2022, 174, 121213.	6.2	10
392	A tissue engineered cell-occlusive device for hard tissue regenerationa preliminary report. International Journal of Periodontics and Restorative Dentistry, 2001, 21, 49-59.	0.4	10
393	Robotic micro-assembly of scaffold/cell constructs with a shape memory alloy gripper. , 0, , .		9
394	Regenerative medicine will impact, but not replace, the medical device industry. Expert Review of Medical Devices, 2006, 3, 409-412.	1.4	9
395	Effect of Collagen-I Modified Composites on Proliferation and Differentiation of Human Alveolar Osteoblasts. Australian Journal of Chemistry, 2006, 59, 571.	0.5	9
396	Tissue engineered prefabricated vascularized flaps. Head and Neck, 2007, 29, 458-464.	0.9	9

#	Article	IF	CITATIONS
397	Towards a medium/high load-bearing scaffold fabrication system. Tsinghua Science and Technology, 2009, 14, 13-19.	4.1	9
398	A road map for a tissue engineering concept for restoring structure and function after limb loss. Journal of Materials Science: Materials in Medicine, 2013, 24, 2659-2663.	1.7	9
399	Breast Reconstruction Using Biofabrication-Based Tissue Engineering Strategies. , 2013, , 183-216.		9
400	Fetal Bone Marrowâ€Derived Mesenchymal Stem/Stromal Cells Enhance Humanization and Bone Formation of BMP7 Loaded Scaffolds. Biotechnology Journal, 2017, 12, 1700414.	1.8	9
401	Non-linear optical microscopy and histological analysis of collagen, elastin and lysyl oxidase expression in breast capsular contracture. European Journal of Medical Research, 2018, 23, 30.	0.9	9
402	Mineralization of plasma treated polymer surfaces from super-saturated simulated body fluids. Materials Letters, 2018, 230, 12-15.	1.3	9
403	Automated 3D Microphysiometry Facilitates High-Content and Highly Reproducible Oxygen Measurements within 3D Cell Culture Models. ACS Sensors, 2021, 6, 1248-1260.	4.0	9
404	Tissue engineering of corneal stroma via melt electrowriting. Journal of Tissue Engineering and Regenerative Medicine, 2021, 15, 841-851.	1.3	9
405	Composite PLDLLA/TCP Scaffolds for Bone Engineering: Mechanical and In Vitro Evaluations. IFMBE Proceedings, 2009, , 1480-1483.	0.2	9
406	Chapter 6. Design and Fabrication of Scaffolds <i>via</i> Melt Electrospinning for Applications in Tissue Engineering. RSC Polymer Chemistry Series, 2015, , 100-120.	0.1	9
407	Biomaterials/scaffolds. Design of bioactive, multiphasic PCL/collagen type I and type II-PCL-TCP/collagen composite scaffolds for functional tissue engineering of osteochondral repair tissue by using electrospinning and FDM techniques. Methods in Molecular Medicine, 2007, 140, 101-24.	0.8	9
408	Endogenous musculoskeletal tissue regeneration. Cell and Tissue Research, 2012, 347, 485-488.	1.5	8
409	Initial design and physical characterization of a polymeric device for osmosisâ€driven delayed burst delivery of vaccines. Biotechnology and Bioengineering, 2015, 112, 1927-1935.	1.7	8
410	Growth Factor-Loaded Microparticles for Tissue Engineering: The Discrepancies of In Vitro Characterization Assays. Tissue Engineering - Part C: Methods, 2016, 22, 142-154.	1.1	8
411	Histomorphometric Evaluation of Critical-Sized Bone Defects Using Osteomeasure and Aperio Image Analysis Systems. Tissue Engineering - Part C: Methods, 2019, 25, 732-741.	1.1	8
412	A humanised rat model of osteosarcoma reveals ultrastructural differences between bone and mineralised tumour tissue. Bone, 2022, 158, 116018.	1.4	8
413	Bone Regeneration Exploiting Corticoperiosteal Tissue Transfer for Scaffold-Guided Bone Regeneration. Tissue Engineering - Part C: Methods, 2022, 28, 202-213.	1.1	8

#	Article	IF	CITATIONS
415	Force-controlled automatic microassembly of tissue engineering scaffolds. Journal of Micromechanics and Microengineering, 2010, 20, 035001.	1.5	7
416	Engineering of tumor microenvironments. Advanced Drug Delivery Reviews, 2014, 79-80, 1-2.	6.6	7
417	Humanized mice models for primary bone tumor and bone metastasis research. Cell Cycle, 2015, 14, 2191-2192.	1.3	7
418	Lycopene's Effects on Cancer Cell Functions within Monolayer and Spheroid Cultures. Nutrition and Cancer, 2016, 68, 350-363.	0.9	7
419	Data for accelerated degradation of calcium phosphate surface-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds. Data in Brief, 2016, 7, 923-926.	0.5	7
420	Differential osteogenicity of multiple donor-derived human mesenchymal stem cells and osteoblasts in monolayer, scaffold-based 3D culture and in vivo. Biomedizinische Technik, 2016, 61, 253-266.	0.9	7
421	Cancer-associated fibroblasts of the prostate promote a compliant and more invasive phenotype in benign prostate epithelial cells. Materials Today Bio, 2020, 8, 100073.	2.6	7
422	Characterization of a novel bioactive poly[(lactic acid)-co-(glycolic acid)] and collagen hybrid matrix for dermal regeneration. Polymer International, 2005, 54, 1449-1457.	1.6	6
423	Bacterial comparison of preoperative rinsing and swabbing for oral surgery using 0.2% chlorhexidine. Journal of Investigative and Clinical Dentistry, 2015, 6, 193-196.	1.8	6
424	Conceptual design of a personalized radiation therapy patch for skin cancer. Current Directions in Biomedical Engineering, 2018, 4, 607-610.	0.2	6
425	Targeted 2D histology and ultrastructural bone analysis based on 3D microCT anatomical locations. MethodsX, 2021, 8, 101480.	0.7	6
426	A Preclinical Animal Model for the Study of Scaffold-Guided Breast Tissue Engineering. Tissue Engineering - Part C: Methods, 2021, 27, 366-377.	1.1	6
427	The Patenting and Technological Trends in Hernia Mesh Implants. Tissue Engineering - Part B: Reviews, 2021, 27, 48-73.	2.5	5
428	A humanized orthotopic tumor microenvironment alters the bone metastatic tropism of prostate cancer cells. Communications Biology, 2021, 4, 1014.	2.0	5
429	Biomechanical Principles of Breast Implants and Current State of Research in Soft Tissue Engineering for Cosmetic Breast Augmentation. Aesthetic Plastic Surgery, 2022, 46, 1-10.	0.5	5
430	Bioengineered Microtissue Models of the Human Bone Metastatic Microenvironment: A Novel In Vitro Theranostics Platform for Cancer Research. Methods in Molecular Biology, 2019, 2054, 23-57.	0.4	5
431	Osteogenic differentiation of amniotic fluid stem cells. Bio-Medical Materials and Engineering, 2008, 18, 241-6.	0.4	5
432	FABRICATION OF 3-D MICROPARTS FOR THE ASSEMBLY OF SCAFFOLD/CELL CONSTRUCTS IN TISSUE ENGINEERING. International Journal of Computational Engineering Science, 2003, 04, 281-284.	0.1	4

DIETMAR WERNER HUTMACHER

#	Article	IF	CITATIONS
433	Comparative study of desktop- and synchrotron radiation-based micro computed tomography analyzing cell-seeded scaffolds in tissue engineering of bone. , 2008, , .		4
434	Bioreactor Studies and Computational Fluid Dynamics. Advances in Biochemical Engineering/Biotechnology, 2009, , 231-249.	0.6	4
435	An electrospun polycaprolactone–collagen membrane for the resurfacing of cartilage defects. Polymer International, 2010, 59, 808-817.	1.6	4
436	Bone Tissue Engineering: Cell Motility, Vascularization, Micro-Nano Scaffolding, and Remodeling. BioMed Research International, 2014, 2014, 1-2.	0.9	4
437	Modelomics to Investigate Cancer Bone Metastasis. Current Molecular Biology Reports, 2018, 4, 88-100.	0.8	4
438	Knowledge, consultation time, and choice in breast reconstruction. British Journal of Surgery, 2021, 108, e168-e169.	0.1	4
439	Direct Fabrication as a Patient-Targeted Therapeutic in a Clinical Environment. Methods in Molecular Biology, 2012, 868, 327-340.	0.4	4
440	Breast Reconstruction Using Scaffold-Based Tissue Engineering. , 2020, , 279-290.		4
441	Pectus excavatum camouflage: a new technique using a tissue engineered scaffold. European Journal of Plastic Surgery, 2022, 45, 177-182.	0.3	4
442	Biomaterial science meets computational biology. Journal of Materials Science: Materials in Medicine, 2015, 26, 185.	1.7	3
443	Quo Vadis Breast Tissue Engineering?. EBioMedicine, 2016, 6, 24-25.	2.7	3
444	Designification of Neurotechnological Devices through 3D Printed Functional Materials. Advanced Functional Materials, 2018, 28, 1703905.	7.8	3
445	Recombinant Human Bone Morphogenetic Protein 7 Exerts Osteo-Catabolic Effects on Bone Grafts That Outweigh Its Osteo-Anabolic Capacity. Calcified Tissue International, 2019, 105, 331-340.	1.5	3
446	<i>MechAnalyze</i> : An Algorithm for Standardization and Automation of Compression Test Analysis. Tissue Engineering - Part C: Methods, 2021, 27, 529-542.	1.1	3
447	5 Cellular Model Systems to Study the Tumor Biological Role of Kallikrein-related Peptidases in Ovarian and Prostate Cancer. , 2012, , 83-110.		3
448	Cognitive Bias and Therapy Choice in Breast Reconstruction Surgery Decision-Making. Plastic and Reconstructive Surgery, 2022, 149, 629e-637e.	0.7	3
449	TISSUE ENGINEERING APPROACH TO OSTEOCHONDRAL REPAIR AND REGENERATION. Journal of Mechanics in Medicine and Biology, 2004, 04, 463-483.	0.3	2
450	Foreword. Journal of Biomaterials Science, Polymer Edition, 2008, 19, 541-542.	1.9	2

#	Article	IF	CITATIONS
451	A Polymerase Chain Reaction-Based Method for Isolating Clones from a Complimentary DNA Library in Sheep. Tissue Engineering - Part C: Methods, 2014, 20, 780-789.	1.1	2
452	Data on in vitro and in vivo cell orientation on substrates with different topographies. Data in Brief, 2015, 5, 379-382.	0.5	2
453	A new 3D printed applicator with radioactive gel for conformal brachytherapy of superficial skin tumors. , 2019, 2019, 6979-6982.		2
454	The Use of 3D Printed Microporous-Strut Polycaprolactone Scaffolds for Targeted Local Delivery of Chemotherapeutic Agent for Breast Cancer Application. IFMBE Proceedings, 2020, , 153-157.	0.2	2
455	Real-Time and 3D Quantification of Cancer Cell Dynamics: Exploiting a Bioengineered Human Bone Metastatic Microtissue. Methods in Molecular Biology, 2019, 2054, 59-77.	0.4	2
456	Preclinical Animal Models for Segmental Bone Defect Research and Tissue Engineering. , 2011, , 845-881.		2
457	PROCESSING OF BIORESORBABLE SCAFFOLDS FOR TISSUE ENGINEERING OF BONE BY APPLYING RAPID PROTOTYPING TECHNOLOGIES. , 2001, , .		2
458	Abstract 4941: A humanized bone model for preclinical monitoring of prostate cancer lesions by intravital multiphoton microscopy. , 2014, , .		2
459	An Open Source Technology Platform to Manufacture Hydrogel-Based 3D Culture Models in an Automated and Standardized Fashion. Journal of Visualized Experiments, 2022, , .	0.2	2
460	Design and Fabrication Principles of Electrospinning of Scaffolds. , 2008, , 115-139.		2
461	In Vitro Physical and Mechano-Chemical Properties of Biodegradable Scaffolds Fabricated with PCL and PCL-PEG. IFMBE Proceedings, 2008, , 821-824.	0.2	2
462	Label-free isolation and cultivation of patient-matched human mammary epithelial and stromal cells from normal breast tissue. European Journal of Cell Biology, 2021, 100, 151187.	1.6	2
463	Automated melt electrowritting platform with real-time process monitoring. HardwareX, 2021, 10, e00246.	1.1	2
464	ATF5, a possible regulator of osteogenic differentiation in adult mesenchymal stem cells. Journal of Stem Cells and Regenerative Medicine, 2007, 2, 110-2.	2.2	2
465	Bone Repair and Adult Stem Cells. , 2005, , 442-465.		1
466	THE BIOMEDICAL APPLICATIONS OF COMPUTED TOMOGRAPHY. , 2007, , 193-223.		1
467	Osteogenic differentiation of amniotic fluid stem cells. Bio-Medical Materials and Engineering, 2008, 18, 241-246.	0.4	1

468 Automated microassembly of tissue engineering scaffold. , 2010, , .

#	Article	IF	CITATIONS
469	Cost-Effective Creation of Biofunctionalised Scaffolds, Tailored to Function as Stem Cell Niches for Expansion, Transport and Delivery. Cytotherapy, 2016, 18, S60.	0.3	1
470	Biomimic Design of Periosteum: Construction Strategies, Scaffold Design and Cell Sources. Springer Series in Biomaterials Science and Engineering, 2017, , 303-318.	0.7	1
471	6.3 Engineering the Organ Bone. , 2017, , 54-74.		1
472	5.11 Engineering the Haematopoietic Stem Cell Niche In Vitro. , 2017, , 187-199.		1
473	Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. , 2001, 55, 203.		1
474	Craniofacial Bone Tissue Engineering Using Medical Imaging, Computational Modeling, Rapid Prototyping, Bioresorbable Scaffolds and Bone Marrow Aspirates. , 2002, , 333-354.		1
475	Co-culture of Bone Marrow Fibroblasts and Endothelial Cells on Modified Polycaprolactone Substrates for Enhanced Potentials in Bone Tissue Engineering. Tissue Engineering, 2006, .	4.9	1
476	Design, Fabrication, and Characterization of Scaffolds via Solid Free-Form Fabrication Techniques. , 2008, , 45-67.		1
477	Exploring Surgeons', Nurses', and Patients' Information Seeking Behavior on Medical Innovations. Annals of Surgery Open, 2022, 3, e176.	0.7	1
478	Scaffold-based Tissue Engineering - Design and Fabrication of Matrices Using Solid Freeform Fabrication Techniques. , 2006, , 163-189.		0
479	Scaffold and implant design: Considerations relating to characterization of biodegradablity and bioresorbability. , 2008, , 319-356.		0
480	Sphingosine-1-phosphate mediates proliferation maintaining the multipotency of human adult bone marrow and adipose tissue-derived stem cells. Journal of Molecular Cell Biology, 2011, 3, 382-382.	1.5	0
481	Matrices for Zonal Cartilage Tissue Engineering. , 2012, , 733-755.		0
482	Preclinical Animal Models for Segmental Bone Defect Research and Tissue Engineering. , 2013, , 1023-1064.		0
483	Manufacturing meets biofabrication: Part 1. BioNanoMaterials, 2014, 15, .	1.4	0
484	6.25 Breast Tissue Engineering. , 2017, , 435-454.		0
485	SpheroidSim—Preliminary evaluation of a new computational tool to predict the influence of cell cycle time and phase fraction on spheroid growth. Biotechnology Progress, 2018, 34, 1335-1343.	1.3	0
486	Threeâ€dimensional printing in a pandemic: panacea or panic?. Medical Journal of Australia, 2020, 213, 267-268.	0.8	0

#	ARTICLE	IF	CITATIONS
487	The Application of Image Processing Software for Tissue Engineering(Cellular & Tissue Engineering). The Proceedings of the Asian Pacific Conference on Biomechanics Emerging Science and Technology in Biomechanics, 2004, 2004.1, 95-96.	0.0	ο
488	Repair of Large Articular Osteochondral Defects Using Hybrid Scaffolds and Bone Marrow-Derived Mesenchymal Stem Cells in a Rabbit Model. Tissue Engineering, 2006, .	4.9	0
489	Bone Tissue Engineering. , 2010, , 105-143.		0
490	Electrospinning for Regenerative Medicine. , 2013, , 539-592.		0
491	Electrospinning Technology: Cellulose and Cellulose Derivatives. , 0, , 3218-3258.		ο
492	Skin Tissue Engineering. , 0, , 7308-7321.		0
493	Skin Tissue Engineering: In Vitro Evaluation of Natural and Synthetic 3-D Matrices. , 0, , 7322-7334.		0
494	Electrospinning Technology: Cellulose and Cellulose Derivatives. , 2017, , 506-546.		0
495	Abstract 1165: A tissue-engineered bone mimetic in vitro model for monitoring metastatic PCa growth and therapy response. , 2018, , .		0
496	Abstract 3747: Radium 223 inhibits prostate cancer in bone via zonal cytotoxicity. , 2019, , .		0
497	The Current State and Future of Regenerative Sports Medicine. Future of Business and Finance, 2020, , 133-149.	0.3	0
498	10/10/2021 7:17:32 PM. Bio-protocol, 2021, , .	0.2	0
499	A 3D-Printed Biomaterials-Based Platform to Advance Established Therapy Avenues Against Primary Bone Cancers. SSRN Electronic Journal, 0, , .	0.4	0
500	Engineering mammary tissue microenvironments in vitro. Advances in Stem Cells and Their Niches, 2022, , .	0.1	0
501	Abstract 3747: Radium 223 inhibits prostate cancer in bone via zonal cytotoxicity. , 2019, , .		0