Andras Szilagyi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3244646/publications.pdf

Version: 2024-02-01

		331670	1	197818	
53	2,525 citations	21		49	
papers	citations	h-index		g-index	
56	56	56		3563	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Early pathways, biomarkers, and four distinct molecular subclasses of preeclampsia: The intersection of clinical, pathological, and high-dimensional biology studies. Placenta, 2022, 125, 10-19.	1.5	19
2	Novel biomarkers of recurrent pregnancy loss identified by next generation proteomics of maternal plasma. Placenta, 2021, 112, e19.	1.5	0
3	Transcriptional co-activator TAZ controls EVT differentiation in the developing human placenta. Placenta, 2021, 112, e50-e51.	1.5	O
4	Epigenetic Dysregulation of Trophoblastic Gene Expression in Gestational Trophoblastic Disease. Biomedicines, 2021, 9, 1935.	3.2	7
5	Ligand-induced conformational rearrangements regulate the switch between membrane-proximal and distal functions of Rho kinase 2. Communications Biology, 2020, 3, 721.	4.4	3
6	Proteomic identification of Placental Protein 1 (PP1), PP8, and PP22 and characterization of their placental expression in healthy pregnancies and in preeclampsia. Placenta, 2020, 99, 197-207.	1.5	3
7	Decreased Expression of ZNF554 in Gliomas is Associated with the Activation of Tumor Pathways and Shorter Patient Survival. International Journal of Molecular Sciences, 2020, 21, 5762.	4.1	5
8	Pivotal role of the transcriptional co-activator YAP in trophoblast stemness of the developing human placenta. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13562-13570.	7.1	95
9	Placenta-Specific Genes, Their Regulation During Villous Trophoblast Differentiation and Dysregulation in Preterm Preeclampsia. International Journal of Molecular Sciences, 2020, 21, 628.	4.1	30
10	Dysregulation of Placental Functions and Immune Pathways in Complete Hydatidiform Moles. International Journal of Molecular Sciences, 2019, 20, 4999.	4.1	13
11	New type of interaction between the SARAH domain of the tumour suppressor RASSF1A and its mitotic kinase Aurora A. Scientific Reports, 2019, 9, 5550.	3.3	4
12	Sex hormone-binding globulin provides a novel entry pathway for estradiol and influences subsequent signaling in lymphocytes via membrane receptor. Scientific Reports, 2019, 9, 4.	3.3	29
13	Calculation of Configurational Entropy Differences from Conformational Ensembles Using Gaussian Mixtures. Journal of Chemical Theory and Computation, 2017, 13, 29-41.	5.3	16
14	Segment swapping aided the evolution of enzyme function: The case of uroporphyrinogen III synthase. Proteins: Structure, Function and Bioinformatics, 2017, 85, 46-53.	2.6	3
15	Extensive Basal Level Activation of Complement Mannose-Binding Lectin-Associated Serine Protease-3: Kinetic Modeling of Lectin Pathway Activation Provides Possible Mechanism. Frontiers in Immunology, 2017, 8, 1821.	4.8	20
16	Structural Determinants of Sleeping Beauty Transposase Activity. Molecular Therapy, 2016, 24, 1369-1377.	8.2	7
17	Placental Protein 13 (PP13) ââ,¬â€œ A Placental Immunoregulatory Galectin Protecting Pregnancy. Frontiers in Immunology, 2014, 5, 348.	4.8	90
18	Template-based structure modeling of protein–protein interactions. Current Opinion in Structural Biology, 2014, 24, 10-23.	5.7	149

#	Article	IF	CITATIONS
19	Drugs Against Mycobacterium tuberculosis 3-Isopropylmalate Dehydrogenase Can be Developed Using Homologous Enzymes as Surrogate Targets. Protein and Peptide Letters, 2014, 21, 1295-1307.	0.9	2
20	Structure Prediction and Analysis of DNA Transposon and LINE Retrotransposon Proteins. Journal of Biological Chemistry, 2013, 288, 16127-16138.	3.4	12
21	Turning gold into  junk': transposable elements utilize central proteins of cellular networks. Nucleic Acids Research, 2013, 41, 3190-3200.	14.5	22
22	Editorial (Hot Topic: From Allosteric Drugs to Allo-Network Drugs: State of the Art and Trends of) Tj ETQq0 0 0 0	gBT_/Overl	ock 10 Tf 50
23	Allo-Network Drugs: Extension of the Allosteric Drug Concept to Protein-Protein Interaction and Signaling Networks. Current Topics in Medicinal Chemistry, 2013, 13, 64-77.	2.1	68
24	"Pull Moves" for Rectangular Lattice Polymer Models Are Not Fully Reversible. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2012, 9, 1847-1849.	3.0	7
25	Intra-Chain 3D Segment Swapping Spawns the Evolution of New Multidomain Protein Architectures. Journal of Molecular Biology, 2012, 415, 221-235.	4.2	13
26	Genome-Wide Protein Structure Prediction. , 2011, , 255-279.		2
27	Improving Protein Structure Prediction Using Multiple Sequence-Based Contact Predictions. Structure, 2011, 19, 1182-1191.	3.3	62
28	PP13, Maternal ABO Blood Groups and the Risk Assessment of Pregnancy Complications. PLoS ONE, 2011, 6, e21564.	2.5	45
29	Protein Homology Analysis for Function Prediction with Parallel Sub-Graph Isomorphism. , 2011 , , $129\text{-}144$.		0
30	iDBPs: a web server for the identification of DNA binding proteins. Bioinformatics, 2010, 26, 692-693.	4.1	76
31	A primate subfamily of galectins expressed at the maternal–fetal interface that promote immune cell death. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9731-9736.	7.1	200
32	Two-patch model of spatial niche segregation. Evolutionary Ecology, 2009, 23, 187-205.	1.2	12
33	Identification of DNA-binding Proteins Using Structural, Electrostatic and Evolutionary Features. Journal of Molecular Biology, 2009, 387, 1040-1053.	4.2	75
34	A Link between Hinge-Bending Domain Motions and the Temperature Dependence of Catalysis in 3-Isopropylmalate Dehydrogenase. Biophysical Journal, 2009, 96, 5003-5012.	0.5	11
35	Adjustment of conformational flexibility of glyceraldehyde-3-phosphate dehydrogenase as a means of thermal adaptation and allosteric regulation. European Biophysics Journal, 2008, 37, 1139-1144.	2.2	8
36	A mathematically related singularity and the maximum size of protein domains. Proteins: Structure, Function and Bioinformatics, 2008, 71, 2086-2088.	2.6	1

#	Article	IF	CITATIONS
37	The Twilight Zone between Protein Order and Disorder. Biophysical Journal, 2008, 95, 1612-1626.	0.5	29
38	Engineering the thermostability of a TIM-barrel enzyme by rational family shuffling. Biochemical and Biophysical Research Communications, 2008, 374, 725-730.	2.1	16
39	Rates of Unfolding, Rather than Refolding, Determine Thermal Stabilities of Thermophilic, Mesophilic, and Psychrotrophic 3-Isopropylmalate Dehydrogenases. Biochemistry, 2007, 46, 11536-11549.	2.5	13
40	Protein Folding., 2007,, 303-343.		7
41	Efficient Prediction of Nucleic Acid Binding Function from Low-resolution Protein Structures. Journal of Molecular Biology, 2006, 358, 922-933.	4.2	149
42	Prediction of physical protein–protein interactions. Physical Biology, 2005, 2, S1-S16.	1.8	97
43	On the Sequential Determinants of Calpain Cleavage. Journal of Biological Chemistry, 2004, 279, 20775-20785.	3.4	279
44	TOUCHSTONE: A unified approach to protein structure prediction. Proteins: Structure, Function and Bioinformatics, 2003, 53, 469-479.	2.6	72
45	Homology modeling reveals the structural background of the striking difference in thermal stability between two related [NiFe]hydrogenases. Journal of Molecular Modeling, 2002, 8, 58-64.	1.8	11
46	Increasing the thermal stability of cellulase C using rules learned from thermophilic proteins: a pilot study. Biophysical Chemistry, 2002, 96, 229-241.	2.8	22
47	Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey. Structure, 2000, 8, 493-504.	3.3	588
48	Mirror image mutations reveal the significance of an intersubunit ion cluster in the stability of 3-isopropylmalate dehydrogenase. FEBS Letters, 2000, 468, 48-52.	2.8	15
49	Separation of nonionic surfactant according to the length of the ethylene oxide chain on alumina layers. Toxicological and Environmental Chemistry, 1998, 65, 95-102.	1.2	3
50	Sequence and homology model of 3-isopropylmalate dehydrogenase from the psychrotrophic bacterium Vibrio sp. 15 suggest reasons for thermal instability. Protein Engineering, Design and Selection, 1997, 10, 665-672.	2.1	43
51	Relationship between thermal stability and 3-D structure in a homology model of 3-isopropylmalate dehydrogenase from Escherichia coli. Protein Engineering, Design and Selection, 1996, 9, 663-670.	2.1	12
52	Structural basis for the extreme thermostability of D-glyceraldehyde-3-phosphate dehydrogenase from Thermotoga maritima: analysis based on homology modelling. Protein Engineering, Design and Selection, 1995, 8, 779-789.	2.1	30
53	Protein Homology Analysis for Function Prediction with Parallel Sub-Graph Isomorphism., 0,, 386-399.		2