
José Antonio Malmonge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3244456/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior. Carbohydrate Polymers, 2010, 81, 83-92.	5.1	850
2	Study of pyroelectric activity of PZT/PVDF-HFP composite. Materials Research, 2003, 6, 469-473.	0.6	73
3	Thermal and mechanical properties of PVDF/PANI blends. Materials Research, 2010, 13, 465-470.	0.6	61
4	Thermo-analyses of polyaniline and its derivatives. Thermochimica Acta, 2010, 502, 43-46.	1.2	57
5	A new route to obtain PVDF/PANI conducting blends. European Polymer Journal, 2006, 42, 3108-3113.	2.6	45
6	Nanocomposites of natural rubber and polyaniline-modified cellulose nanofibrils. Journal of Thermal Analysis and Calorimetry, 2014, 117, 387-392.	2.0	44
7	Electrical, mechanical, and thermal analysis of natural rubber/polyaniline-Dbsa composite. Materials Research, 2014, 17, 59-63.	0.6	42
8	YBCO ceramic nanofibers obtained by the new technique of solution blow spinning. Ceramics International, 2016, 42, 16230-16234.	2.3	41
9	Characteristics of polyaniline electropolymerized in camphor sulfonic acid. Synthetic Metals, 1995, 69, 141-142.	2.1	36
10	Behaviour of metakaolin-based geopolymers incorporating sewage sludge ash (SSA). Materials Letters, 2016, 180, 192-195.	1.3	35
11	Influence of cellulose nanofibrils on soft and hard segments of polyurethane/cellulose nanocomposites and effect of humidity on their mechanical properties. Polymer Testing, 2014, 40, 99-105.	2.3	34
12	Conductive Nanocomposites Based on Cellulose Nanofibrils Coated with Polyanilineâ€DBSA Via <i>In Situ</i> Polymerization. Macromolecular Symposia, 2012, 319, 196-202.	0.4	29
13	Comparative study on the technological properties of latex and natural rubber from <i>Hancornia speciosa</i> Gomes and <i>Hevea brasiliensis</i> . Journal of Applied Polymer Science, 2009, 111, 2986-2991.	1.3	26
14	Studies on thermal–oxidative degradation behaviours of raw natural rubber: PRI and thermogravimetry analysis. Plastics, Rubber and Composites, 2013, 42, 334-339.	0.9	21
15	Synergistic effects on polyurethane/lead zirconate titanate/carbon black three-phase composites. Polymer Testing, 2017, 60, 253-259.	2.3	21
16	BSCCO superconductor micro/nanofibers produced by solution blow-spinning technique. Ceramics International, 2017, 43, 7663-7667.	2.3	20
17	Influence of polymer insertion on the dielectric, piezoelectric and acoustic properties of 1-0-3 polyurethane/cement-based piezo composite. Materials Research Bulletin, 2019, 119, 110541.	2.7	19
18	Biocompatible PCL/PLGA/Polypyrrole Composites for Regenerating Nerves. Macromolecular Symposia, 2019, 383, 1800028.	0.4	18

#	Article	IF	CITATIONS
19	Effect of the doping medium on blends of polyurethane and polyaniline. Synthetic Metals, 2001, 119, 87-88.	2.1	17
20	Influence of PZT insertion on Portland cement curing process and piezoelectric properties of 0–3 cement-based composites by impedance spectroscopy. Construction and Building Materials, 2020, 238, 117675.	3.2	17
21	Doping of polyaniline and derivatives induced by X-Ray radiation. Synthetic Metals, 1997, 84, 779-780.	2.1	16
22	PVDF/Ni fibers synthesis by solution blow spinning technique. Journal of Materials Science: Materials in Electronics, 2018, 29, 514-518.	1.1	16
23	A comparative study of the non-isothermal degradation of natural rubber from Mangabeira (Hancornia speciosa Gomes) and Seringueira (Hevea brasiliensis). Journal of Thermal Analysis and Calorimetry, 2010, 100, 1045-1050.	2.0	15
24	Analysis of dipolar relaxation in polyurethane/polyaniline blend. Journal of Materials Science, 2005, 40, 4557-4560.	1.7	14
25	Piezo and dielectric properties of PHB–PZT composite. Polymer Composites, 2009, 30, 1333-1337.	2.3	14
26	Study of thermal and mechanical properties of a biocomposite based on natural rubber and 45S5 Bioglass® particles. Journal of Thermal Analysis and Calorimetry, 2018, 131, 735-742.	2.0	13
27	Analysis of the electrical conduction in percolative nanocomposites based on castorâ€oil polyurethane with carbon black and activated carbon nanopowder. Polymer Composites, 2019, 40, 7-15.	2.3	13
28	PTCa/PEEK composite acoustic emission sensors. IEEE Transactions on Dielectrics and Electrical Insulation, 2006, 13, 1177-1182.	1.8	12
29	Compósitos de borracha natural com polianilina. Polimeros, 2007, 17, 93-97.	0.2	12
30	A study on X-ray irradiation of composite polyaniline LB films. Thin Solid Films, 1998, 327-329, 808-812.	0.8	11
31	Layer-by-layer thin films of polyaniline alternated with natural rubber and their potential application as a chemical sensor. Journal of Polymer Research, 2017, 24, 1.	1.2	11
32	Open-Circuit TSD Method and Anomalous Air Gap Current in Teflon® FEP. IEEE Transactions on Electrical Insulation, 1986, EI-21, 383-387.	0.8	10
33	Non-isothermal decomposition kinetics of conductive polyaniline and its derivatives. Polimeros, 2018, 28, 285-292.	0.2	10
34	DBSA to improve the compatibility, solubility, and infusibility of cellulose nanowhiskers modified by polyaniline in reinforcing a natural rubber-based nanocomposite. Polymer Bulletin, 2019, 76, 3517-3533.	1.7	10
35	Mechanical, thermal, and morphological properties of natural rubber/45S5 Bioglass® fibrous mat with ribbon-like morphology produced by solution blow spinning. European Polymer Journal, 2019, 119, 1-7.	2.6	9
36	Microcontrolled pyro-electric instrument for measuring X-ray intensity in mammography. Medical and Biological Engineering and Computing, 2005, 43, 751-755.	1.6	8

#	Article	IF	CITATIONS
37	Effect of polyol excess on the electrical property of vegetable-polyurethane film. Journal of Materials Science, 2008, 43, 5436-5440.	1.7	8
38	Pristine cardanol as biobased dopant for polyaniline. Materials Letters, 2016, 185, 327-330.	1.3	7
39	Nanocomposites of polyethylene/polyaniline/graphite with special morphology. Polymer Composites, 2018, 39, 3645-3655.	2.3	7
40	Cashew nut shell liquid, a valuable raw material for generating semiconductive polyaniline nanofibers. Polimeros, 2018, 28, 61-68.	0.2	7
41	Chitosan Nanocomposites with Graphene-Based Filler. Materials Research, 2019, 22, .	0.6	7
42	Polyaniline mixed LB films exposed to X-rays. Synthetic Metals, 1999, 101, 801-802.	2.1	6
43	Structure and microstructure of PbTiO3 thin films obtained from hybrid chemical method. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 346, 223-227.	2.6	6
44	Preparation and characterization of castor oil-based polyurethane/poly(o-methoxyaniline) blend film. Journal of Applied Polymer Science, 2007, 105, 706-709.	1.3	6
45	Fabrication of Polypyrrole Nanoparticles Using Microemulsion Polymerization for Diferent Py/APS/SDS Molar Ratios. Materials Science Forum, 0, 869, 391-395.	0.3	6
46	Preparation and Characterization of Polymeric Microfibers of PLGA and PLGA/PPy Composite Fabricated by Solution Blow Spinning. Macromolecular Symposia, 2019, 383, 1800030.	0.4	5
47	Study of the electrical conduction process in natural rubberâ€based conductive nanocomposites filled with cellulose nanowhiskers coated by polyaniline. Polymer Composites, 2021, 42, 1519-1529.	2.3	4
48	Tuning piezoelectric properties in elastomeric polyurethane nanocomposites utilizing cellulose nanocrystals. Journal of Applied Polymer Science, 2021, 138, 50865.	1.3	4
49	Electrically conductive nanocomposites produced by in situ polymerization of pyrrole in preâ€vulcanized natural rubber latex. Polymer Composites, 0, , .	2.3	4
50	Fabrication of Fish Gelatin Microfibrous Mats by Solution Blow Spinning. Materials Research, 2019, 22,	0.6	3
51	1-3 Castor Oil-Based Polyurethane/PZT Piezoelectric Composite as a Possible Candidate for Structural Health Monitoring. Materials Research, 2020, 23, .	0.6	3
52	Study of charge transport in blends of natural rubber and poly(o-methoxyaniline) based on a resistor network statistical model. Synthetic Metals, 2009, 159, 2208-2210.	2.1	2
53	PolÃmeros orgânicos com ureia dissolvida e doses de nitrogênio no milho. Revista De Ciências Agrárias, 0, 62, .	0.1	2
54	Graphite nanosheet/polyaniline nanocomposites: Effect of in situ polymerization and dopants on the microstructure, thermal, and electrical conduction properties. Journal of Applied Polymer Science, 2022, 139, .	1.3	2

#	Article	IF	CITATIONS
55	Characterization of castor oil based polyurethane films prepared withN-methyl-2-pyrrolidinone as a solvent. Journal of Applied Polymer Science, 2005, 98, 746-749.	1.3	1
56	PTCa/PEEK composite acoustic emission sensors. IEEE Transactions on Dielectrics and Electrical Insulation, 2006, 13, 1177-1182.	1.8	1
57	Piezoelectric Composites: Fabrication, Characterization, and Its Application as Sensor. , 2017, , 195-215.		1
58	Preparação e caracterização do compósito PVDF/Pani com partÃculas de nÃquel. Polimeros, 2017, 27, 116-126.	0.2	0
59	Reduced graphene oxide decorated with Ni-Fe-Mo permalloy obtained by sputtering. Materials Today Communications, 2021, 26, 102110.	0.9	0
60	Cover Image, Volume 139, Issue 22. Journal of Applied Polymer Science, 2022, 139, .	1.3	0