
Laura Antonella Aronica

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3243519/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chiroptical response inversion upon sample flipping in thin films of a chiral benzo[1,2-b:4,5-b′]dithiophene-based oligothiophene. Materials Chemistry Frontiers, 2017, 1, 2047-2056.	5.9	62
2	Outstanding Chiroptical Features of Thin Films of Chiral Oligothiophenes. ChemNanoMat, 2018, 4, 1059-1070.	2.8	51
3	Emergent Nonreciprocal Circularly Polarized Emission from an Organic Thin Film. Advanced Materials, 2020, 32, e2002575.	21.0	50
4	Potentiality and Synthesis of O―and Nâ€Heterocycles: Pd atalyzed Cyclocarbonylative Sonogashira Coupling as a Valuable Route to Phthalans, Isochromans, and Isoindolines. European Journal of Organic Chemistry, 2017, 2017, 7204-7221.	2.4	45
5	Solvated gold atoms in the preparation of efficient supported catalysts: Correlation between morphological features and catalytic activity in the hydrosilylation of 1-hexyne. Journal of Catalysis, 2009, 266, 250-257.	6.2	40
6	Chiral Oligothiophenes with Remarkable Circularly Polarized Luminescence and Electroluminescence in Thin Films. Chemistry - A European Journal, 2020, 26, 16622-16627.	3.3	37
7	Acyl Sonogashira Cross-Coupling: State of the Art and Application to the Synthesis of Heterocyclic Compounds. Catalysts, 2020, 10, 25.	3.5	35
8	Fluoride-Promoted Rearrangement of Organo Silicon Compounds:  A New Synthesis of 2-(Arylmethyl)aldehydes from 1-Alkynes. Journal of Organic Chemistry, 2003, 68, 9292-9298.	3.2	33
9	Synthesis of new bis[1-(thiophenyl)propynones] as potential organic dyes for colorless luminescent solar concentrators (LSCs). Dyes and Pigments, 2020, 174, 108100.	3.7	27
10	New synthesis of α-benzylaldehydes from 2-(dimethylphenylsilylmethylene)alkanals by fluoride promoted phenyl migration. Tetrahedron Letters, 2002, 43, 5813-5815.	1.4	25
11	Polyvinylpyridine-Supported Palladium Nanoparticles: A Valuable Catalyst for the Synthesis of Alkynyl Ketones via Acyl Sonogashira Reactions. Catalysis Letters, 2020, 150, 652-659.	2.6	25
12	Cationic complexes of dirhodium(II) with 1,8-naphthyridine: Catalysis of reactions involving silanes. Journal of Organometallic Chemistry, 2006, 691, 3464-3471.	1.8	22
13	Synthesis and Reactivity of Silylformylation Products Derived from Alkynes. European Journal of Organic Chemistry, 2008, 2008, 3039-3060.	2.4	22
14	Palladium nanoparticles supported on Smopex® metal scavengers as catalyst for carbonylative Sonogashira reactions: Synthesis of α,β-alkynyl ketones. Applied Catalysis A: General, 2014, 480, 1-9.	4.3	21
15	Diastereoselective Intramolecular Silylformylation of ω-Silylacetylenes. Journal of Organic Chemistry, 1999, 64, 9711-9714.	3.2	20
16	Cationic Carboxylato Complexes of Dirhodium(II) with Oxo Thioethers:Â Promising Catalysts with Unusual Coordination Modes. Organometallics, 2004, 23, 1947-1952.	2.3	20
17	<i>Tris</i> â€Ethynylphenylâ€amine Fluorophores: Synthesis, Characterisation and Test of Performances in Luminescent Solar Concentrators. ChemistrySelect, 2018, 3, 1749-1754.	1.5	20
18	Cyclization Reactions for the Synthesis of Phthalans and IsoindolinesÂ . Synthesis, 2018, 50, 1209-1227.	2.3	19

#	Article	IF	CITATIONS
19	Hydrogenolysis of Benzyl Protected Phenols and Aniline Promoted by Supported Palladium Nanoparticles. ChemistrySelect, 2017, 2, 384-388.	1.5	18
20	Synthesis of Functionalised 3â€Isochromanones by Silylcarbocyclisation/Desilylation Reactions. European Journal of Organic Chemistry, 2017, 2017, 3473-3480.	2.4	18
21	Silylation–desilylation of propargyl amides: rapid synthesis of functionalised aldehydes and β-lactams. Tetrahedron, 2007, 63, 6843-6854.	1.9	17
22	Synthesis of Nâ€Heteroaromatic Compounds through Cyclocarbonylative Sonogashira Reactions. European Journal of Organic Chemistry, 2017, 2017, 955-963.	2.4	17
23	Synthesis of Functionalised Indoline and Isoquinoline Derivatives through a Silylcarbocyclisation/Desilylation Sequence. ChemistrySelect, 2019, 4, 2505-2511.	1.5	16
24	Synthesis of 3-Alkylideneisoindolin-1-ones via Sonogashira Cyclocarbonylative Reactions of 2-Ethynylbenzamides. Journal of Organic Chemistry, 2020, 85, 10022-10034.	3.2	16
25	Photophysical properties of new p-phenylene- and benzodithiophene-based fluorophores for luminescent solar concentrators (LSCs). Dyes and Pigments, 2020, 178, 108368.	3.7	16
26	From Alkynes to Heterocycles through Metal-Promoted Silylformylation and Silylcarbocyclization Reactions. Catalysts, 2020, 10, 1012.	3.5	15
27	Silylformylation–desilylation of propargyl amides: synthesis of α,β-unsaturated aldehydes. Tetrahedron Letters, 2006, 47, 527-530.	1.4	14
28	Synthesis of functionalised β-lactones via silylcarbocyclisation/desilylation reactions of propargyl alcohols. Tetrahedron, 2010, 66, 265-273.	1.9	14
29	Highly selective silylformylation of internal and functionalised alkynes with a cationic dirhodium(II) complex catalyst. Journal of Organometallic Chemistry, 2010, 695, 792-798.	1.8	12
30	Synthesis of 2â€Alkylideneisochromans by Cyclocarbonylative Sonogashira Reactions. European Journal of Organic Chemistry, 2014, 2014, 6858-6862.	2.4	12
31	Cyclocarbonylative Sonogashira Reactions of 1â€Ethynylbenzyl Alcohols: Synthesis of 1â€Carbonylmethyleneâ€1,3â€Dihydroisobenzofurans. European Journal of Organic Chemistry, 2015, 2015, 4944-4949.	2.4	12
32	Palladium Nanoparticles Supported on Smopex-234 \hat{A}^{\circledast} as Valuable Catalysts for the Synthesis of Heterocycles. Catalysts, 2021, 11, 706.	3.5	11
33	Supported Metal Catalysts for the Synthesis of N-Heterocycles. Catalysts, 2022, 12, 68.	3.5	11
34	Silylformylation – Fluoride-Assisted Aryl Migration of Acetylenic Derivatives in a Versatile Approach to the Synthesis of Polyfunctionalised Compounds. European Journal of Organic Chemistry, 2006, 2006, 1845-1851.	2.4	9
35	Metal vapour derived supported rhodium nanoparticles in the synthesis of β-lactams and β-lactones derivatives. Journal of Organometallic Chemistry, 2012, 700, 20-28.	1.8	9
36	Metal Promoted Cyclocarbonylation Reactions in the Synthesis of Heterocycles. Catalysts, 2022, 12, 353.	3.5	0