
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3243133/publications.pdf Version: 2024-02-01

RAITAZAD F

#	Article	IF	CITATIONS
1	Magnetic Solid Nanoparticles and Their Counterparts: Recent Advances towards Cancer Theranostics. Pharmaceutics, 2022, 14, 506.	2.0	13
2	In Vivo Anticancer Activity of AZD3965: A Systematic Review. Molecules, 2022, 27, 181.	1.7	27
3	In Vitro CRISPR/Cas9 Transfection and Gene-Editing Mediated by Multivalent Cationic Liposome–DNA Complexes. Pharmaceutics, 2022, 14, 1087.	2.0	9
4	Portuguese Propolis Antitumoral Activity in Melanoma Involves ROS Production and Induction of Apoptosis. Molecules, 2022, 27, 3533.	1.7	6
5	Selective Cytotoxicity of Portuguese Propolis Ethyl Acetate Fraction towards Renal Cancer Cells. Molecules, 2022, 27, 4001.	1.7	4
6	Disruption of pH Dynamics Suppresses Proliferation and Potentiates Doxorubicin Cytotoxicity in Breast Cancer Cells. Pharmaceutics, 2021, 13, 242.	2.0	12
7	Nestin Expression Is Associated with Relapses in Head and Neck Lesions. Diagnostics, 2021, 11, 583.	1.3	1
8	Cancer Cells' Metabolism Dynamics in Renal Cell Carcinoma Patients' Outcome: Influence of GLUT-1-Related hsa-miR-144 and hsa-miR-186. Cancers, 2021, 13, 1733.	1.7	12
9	MCT1 Is a New Prognostic Biomarker and Its Therapeutic Inhibition Boosts Response to Temozolomide in Human Glioblastoma. Cancers, 2021, 13, 3468.	1.7	14
10	Modulating chitosan-PLGA nanoparticle properties to design a co-delivery platform for glioblastoma therapy intended for nose-to-brain route. Drug Delivery and Translational Research, 2020, 10, 1729-1747.	3.0	26
11	Microbes and Cancer: Friends or Faux?. International Journal of Molecular Sciences, 2020, 21, 3115.	1.8	36
12	The metabolic landscape of urological cancers: New therapeutic perspectives. Cancer Letters, 2020, 477, 76-87.	3.2	14
13	IL-17A and IL-17F orchestrate macrophages to promote lung cancer. Cellular Oncology (Dordrecht), 2020, 43, 643-654.	2.1	25
14	Competitive glucose metabolism as a target to boost bladder cancer immunotherapy. Nature Reviews Urology, 2020, 17, 77-106.	1.9	91
15	A novel strategy for glioblastoma treatment combining alpha-cyano-4-hydroxycinnamic acid with cetuximab using nanotechnology-based delivery systems. Drug Delivery and Translational Research, 2020, 10, 594-609.	3.0	26
16	Lactate Beyond a Waste Metabolite: Metabolic Affairs and Signaling in Malignancy. Frontiers in Oncology, 2020, 10, 231.	1.3	92
17	Lactate and Lactate Transporters as Key Players in the Maintenance of the Warburg Effect. Advances in Experimental Medicine and Biology, 2020, 1219, 51-74.	0.8	37
18	Direct actions of adiponectin on changes in reproductive, metabolic, and anti-oxidative enzymes status in the testis of adult mice. General and Comparative Endocrinology, 2019, 279, 1-11.	0.8	28

#	Article	IF	CITATIONS
19	Fucoidan from Fucus vesiculosus inhibits new blood vessel formation and breast tumor growth in vivo. Carbohydrate Polymers, 2019, 223, 115034.	5.1	51
20	Magnetoliposomes Containing Calcium Ferrite Nanoparticles for Applications in Breast Cancer Therapy. Pharmaceutics, 2019, 11, 477.	2.0	27
21	Rational Identification of a Colorectal Cancer Targeting Peptide through Phage Display. Scientific Reports, 2019, 9, 3958.	1.6	23
22	Synthesis, characterization and <i>in vitro</i> validation of a magnetic zeolite nanocomposite with <i>T</i> ₂ -MRI properties towards theranostic applications. Journal of Materials Chemistry B, 2019, 7, 3351-3361.	2.9	15
23	Clinical significance of metabolism-related biomarkers in non-Hodgkin lymphoma – MCT1 as potential target in diffuse large B cell lymphoma. Cellular Oncology (Dordrecht), 2019, 42, 303-318.	2.1	34
24	Internalization studies on zeolite nanoparticles using human cells. Journal of Materials Chemistry B, 2018, 6, 469-476.	2.9	10
25	The clinicopathological significance of monocarboxylate transporters in testicular germ cell tumors. Oncotarget, 2018, 9, 20386-20398.	0.8	9
26	Adenine Derivatives: Promising Candidates for Breast Cancer Treatment. European Journal of Organic Chemistry, 2018, 2018, 3943-3956.	1.2	5
27	Bioenergetic modulators hamper cancer cell viability and enhance response to chemotherapy. Journal of Cellular and Molecular Medicine, 2018, 22, 3782-3794.	1.6	3
28	Exploitation of new chalcones and 4H-chromenes as agents for cancer treatment. European Journal of Medicinal Chemistry, 2018, 157, 101-114.	2.6	29
29	Value of pH regulators in the diagnosis, prognosis and treatment of cancer. Seminars in Cancer Biology, 2017, 43, 17-34.	4.3	78
30	Comparison of different silica microporous structures as drug delivery systems for in vitro models of solid tumors. RSC Advances, 2017, 7, 13104-13111.	1.7	22
31	Monocarboxylate transporter 1 is a key player in gliomaâ€endothelial cell crosstalk. Molecular Carcinogenesis, 2017, 56, 2630-2642.	1.3	31
32	Alginate hydrogel improves anti-angiogenic bevacizumab activity in cancer therapy. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 119, 271-282.	2.0	42
33	The expression of monocarboxylate transporters in thyroid carcinoma can be associated with the morphological features of BRAF V600E mutation. Endocrine, 2017, 56, 379-387.	1.1	0
34	HER Family Receptors are Important Theranostic Biomarkers for Cervical Cancer: Blocking Glucose Metabolism Enhances the Therapeutic Effect of HER Inhibitors. Theranostics, 2017, 7, 717-732.	4.6	31
35	Impact of mesenchymal stem cells' secretome on glioblastoma pathophysiology. Journal of Translational Medicine, 2017, 15, 200.	1.8	33
36	Metabolic alterations underlying Bevacizumab therapy in glioblastoma cells. Oncotarget, 2017, 8, 103657-103670.	0.8	21

#	Article	IF	CITATIONS
37	GLUT1 expression in pediatric adrenocortical tumors: a promising candidate to predict clinical behavior. Oncotarget, 2017, 8, 63835-63845.	0.8	8
38	Significance of glycolytic metabolism-related protein expression in colorectal cancer, lymph node and hepatic metastasis. BMC Cancer, 2016, 16, 535.	1.1	47
39	Absence of microsatellite instability and <i>BRAF</i> (<i>V600E</i>) mutation in testicular germ cell tumors. Andrology, 2016, 4, 866-872.	1.9	18
40	Prognostic significance of monocarboxylate transporter expression in oral cavity tumors. Cell Cycle, 2016, 15, 1865-1873.	1.3	35
41	Metabolic coupling in urothelial bladder cancer compartments and its correlation to tumor aggressiveness. Cell Cycle, 2016, 15, 368-380.	1.3	30
42	The metabolic microenvironment of melanomas: Prognostic value of MCT1 and MCT4. Cell Cycle, 2016, 15, 1462-1470.	1.3	66
43	The anticancer agent 3-bromopyruvate: a simple but powerful molecule taken from the lab to the bedside. Journal of Bioenergetics and Biomembranes, 2016, 48, 349-362.	1.0	55
44	Colon Cancer Chemoprevention by Sage Tea Drinking: Decreased DNA Damage and Cell Proliferation. Phytotherapy Research, 2016, 30, 298-305.	2.8	31
45	Hotspot TERT promoter mutations are rare events in testicular germ cell tumors. Tumor Biology, 2016, 37, 4901-4907.	0.8	13
46	Hypoxia-mediated upregulation of MCT1 expression supports the glycolytic phenotype of glioblastomas. Oncotarget, 2016, 7, 46335-46353.	0.8	81
47	Characterization of acetate transport in colorectal cancer cells and potential therapeutic implications. Oncotarget, 2016, 7, 70639-70653.	0.8	37
48	Lactate Transporters and pH Regulation: Potential Therapeutic Targets in Glioblastomas. Current Cancer Drug Targets, 2016, 16, 388-399.	0.8	22
49	Reprogramming energy metabolism and inducing angiogenesis: co-expression of monocarboxylate transporters with VEGF family members in cervical adenocarcinomas. BMC Cancer, 2015, 15, 835.	1.1	29
50	Impact of an Educational Hands-on Project on the Antimicrobial, Antitumor and Anti-Inflammatory Properties of Plants on Portuguese Students' Awareness, Knowledge, and Competences. International Journal of Environmental Research and Public Health, 2015, 12, 2437-2453.	1.2	6
51	Propolis: A Complex Natural Product with a Plethora of Biological Activities That Can Be Explored for Drug Development. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-29.	0.5	195
52	Monocarboxylate transport inhibition potentiates the cytotoxic effect of 5-fluorouracil in colorectal cancer cells. Cancer Letters, 2015, 365, 68-78.	3.2	65
53	Micro- and Mesoporous Structures as Drug Delivery Carriers for Salicylic Acid. Journal of Physical Chemistry C, 2015, 119, 3589-3595.	1.5	16
54	Localization of <scp>MCT</scp> 2 at peroxisomes is associated with malignant transformation in prostate cancer. Journal of Cellular and Molecular Medicine, 2015, 19, 723-733.	1.6	58

#	Article	IF	CITATIONS
55	Cathepsin D protects colorectal cancer cells from acetate-induced apoptosis through autophagy-independent degradation of damaged mitochondria. Cell Death and Disease, 2015, 6, e1788-e1788.	2.7	54
56	A glycolytic phenotype is associated with prostate cancer progression and aggressiveness: a role for monocarboxylate transporters as metabolic targets for therapy. Journal of Pathology, 2015, 236, 517-530.	2.1	99
57	In vitro and in vivo studies of temozolomide loading in zeolite structures as drug delivery systems for glioblastoma. RSC Advances, 2015, 5, 28219-28227.	1.7	29
58	The cytotoxicity of 3-bromopyruvate in breast cancer cells depends on extracellular pH. Biochemical Journal, 2015, 467, 247-258.	1.7	30
59	CD147 and MCT1â€potential partners in bladder cancer aggressiveness and cisplatin resistance. Molecular Carcinogenesis, 2015, 54, 1451-1466.	1.3	61
60	Disruption of BASIGIN decreases lactic acid export and sensitizes non-small cell lung cancer to biguanides independently of the LKB1 status. Oncotarget, 2015, 6, 6708-6721.	0.8	51
61	SMYD3 contributes to a more aggressive phenotype of prostate cancer and targets Cyclin D2 through H4K20me3. Oncotarget, 2015, 6, 13644-13657.	0.8	69
62	Targeting lactate transport suppresses <i>in vivo</i> breast tumour growth. Oncotarget, 2015, 6, 19177-19189.	0.8	92
63	Metabolic reprogramming: a new relevant pathway in adult adrenocortical tumors. Oncotarget, 2015, 6, 44403-44421.	0.8	34
64	Glucose addiction in cancer therapy: advances and drawbacks. Current Drug Metabolism, 2015, 16, 221-242.	0.7	50
65	Lactate Transporters in the Context of Prostate Cancer Metabolism: What Do We Know?. International Journal of Molecular Sciences, 2014, 15, 18333-18348.	1.8	40
66	The basal epithelial marker P-cadherin associates with breast cancer cell populations harboring a glycolytic and acid-resistant phenotype. BMC Cancer, 2014, 14, 734.	1.1	25
67	Lactate transporters and vascular factors in HPV-induced squamous cell carcinoma of the uterine cervix. BMC Cancer, 2014, 14, 751.	1.1	23
68	Differential sensitivities to lactate transport inhibitors of breast cancer cell lines. Endocrine-Related Cancer, 2014, 21, 27-38.	1.6	54
69	Antitumoural and antiangiogenic activity of Portuguese propolis in in vitro and in vivo models. Journal of Functional Foods, 2014, 11, 160-171.	1.6	34
70	T-box Transcription Factor Brachyury Is Associated with Prostate Cancer Progression and Aggressiveness. Clinical Cancer Research, 2014, 20, 4949-4961.	3.2	67
71	A lactate shuttle system between tumour and stromal cells is associated with poor prognosis in prostate cancer. BMC Cancer, 2014, 14, 352.	1.1	92
72	Characterization of monocarboxylate transporters (MCTs) expression in soft tissue sarcomas: distinct prognostic impact of MCT1 sub-cellular localization. Journal of Translational Medicine, 2014, 12, 118.	1.8	29

#	Article	IF	CITATIONS
73	Gene Disruption Using Zinc Finger Nuclease Technology. Methods in Molecular Biology, 2014, 1165, 253-260.	0.4	4
74	Monocarboxylate transporters as targets and mediators in cancer therapy response. Histology and Histopathology, 2014, 29, 1511-24.	0.5	87
75	Characterization of monocarboxylate transporter activity in hepatocellular carcinoma. World Journal of Gastroenterology, 2014, 20, 11780.	1.4	31
76	Portuguese propolis disturbs glycolytic metabolism of human colorectal cancer in vitro. BMC Complementary and Alternative Medicine, 2013, 13, 184.	3.7	22
77	Cancer cell bioenergetics and pH regulation influence breast cancer cell resistance to paclitaxel and doxorubicin. Journal of Bioenergetics and Biomembranes, 2013, 45, 467-475.	1.0	62
78	Potentiation of 5-fluorouracil encapsulated in zeolites as drug delivery systems for in vitro models of colorectal carcinoma. Colloids and Surfaces B: Biointerfaces, 2013, 112, 237-244.	2.5	90
79	Monocarboxylate transporters (MCTs) in gliomas: expression and exploitation as therapeutic targets. Neuro-Oncology, 2013, 15, 172-188.	0.6	208
80	Monocarboxylate transporter 2 (MCT2) as putative biomarker in prostate cancer. Prostate, 2013, 73, 763-769.	1.2	40
81	Loss of caveolin-1 and gain of MCT4 expression in the tumor stroma: Key events in the progression from an in situ to an invasive breast carcinoma. Cell Cycle, 2013, 12, 2684-2690.	1.3	36
82	The Monocarboxylate Transporter Inhibitor α-Cyano-4-Hydroxycinnamic Acid Disrupts Rat Lung Branching. Cellular Physiology and Biochemistry, 2013, 32, 1845-1856.	1.1	17
83	Contribution of Monocarboxylate Transporters to the Aggressive Phenotype of Breast Cancer. Annals of Oncology, 2013, 24, i30.	0.6	0
84	Assessing the Impact of a School Intervention to Promote Students' Knowledge and Practices on Correct Antibiotic Use. International Journal of Environmental Research and Public Health, 2013, 10, 2920-2931.	1.2	28
85	Lactate-Induced IL-8 Pathway in Endothelial Cells—Letter. Cancer Research, 2012, 72, 1901-1902.	0.4	5
86	Zeolite Structures Loading with an Anticancer Compound As Drug Delivery Systems. Journal of Physical Chemistry C, 2012, 116, 25642-25650.	1.5	120
87	CD147 immunohistochemistry discriminates between reactive mesothelial cells and malignant mesothelioma. Diagnostic Cytopathology, 2012, 40, 478-483.	0.5	31
88	Co-expression of monocarboxylate transporter 1 (MCT1) and its chaperone (CD147) is associated with low survival in patients with gastrointestinal stromal tumors (GISTs). Journal of Bioenergetics and Biomembranes, 2012, 44, 171-178.	1.0	51
89	Butyrate activates the monocarboxylate transporter MCT4 expression in breast cancer cells and enhances the antitumor activity of 3-bromopyruvate. Journal of Bioenergetics and Biomembranes, 2012, 44, 141-153.	1.0	60
90	Role of monocarboxylate transporters in human cancers: state of the art. Journal of Bioenergetics and Biomembranes, 2012, 44, 127-139.	1.0	330

#	Article	IF	CITATIONS
91	CD147 overexpression allows an accurate discrimination of bladder cancer patients' prognosis. European Journal of Surgical Oncology, 2011, 37, 811-817.	0.5	23
92	Encapsulation of α-cyano-4-hydroxycinnamic acid into a NaY zeolite. Journal of Materials Science, 2011, 46, 7511-7516.	1.7	34
93	Monocarboxylate transporter 4 (MCT4) and CD147 overexpression is associated with poor prognosis in prostate cancer. BMC Cancer, 2011, 11, 312.	1.1	147
94	GLUT1 and CAIX expression profiles in breast cancer correlate with adverse prognostic factors and MCT1 overexpression. Histology and Histopathology, 2011, 26, 1279-86.	0.5	126
95	Role of endoglin and VEGF family expression in colorectal cancer prognosis and anti-angiogenic therapies. World Journal of Clinical Oncology, 2011, 2, 272.	0.9	36
96	The selective COX-2 inhibitor Etoricoxib reduces acute inflammatory markers in a model of neurogenic laryngitis but loses its efficacy with prolonged treatment. Inflammation Research, 2010, 59, 743-753.	1.6	8
97	Monocarboxylate transporter 1 is upâ€regulated in basalâ€like breast carcinoma. Histopathology, 2010, 56, 860-867.	1.6	168
98	Expression of Monocarboxylate Transporters 1, 2, and 4 in Human Tumours and Their Association with CD147 and CD44. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-7.	3.0	144
99	349 Monocarboxylate transporter 1 as a potential therapeutic target in glioblastomas. European Journal of Cancer, Supplement, 2010, 8, 111.	2.2	0
100	Molecular characterization of EGFR, PDGFRA and VEGFR2 in cervical adenosquamous carcinoma. BMC Cancer, 2009, 9, 212.	1.1	52
101	Portuguese students' knowledge of antibiotics: a cross-sectional study of secondary school and university students in Braga. BMC Public Health, 2009, 9, 359.	1.2	50
102	The prognostic value of CD147/EMMPRIN is associated with monocarboxylate transporter 1 co-expression in gastric cancer. European Journal of Cancer, 2009, 45, 2418-2424.	1.3	78
103	Monocarboxylate transporters 1 and 4 are associated with CD147 in cervical carcinoma. Disease Markers, 2009, 26, 97-103.	0.6	48
104	Peritumoural, but not intratumoural, lymphatic vessel density and invasion correlate with colorectal carcinoma poor-outcome markers. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2008, 452, 133-138.	1.4	24
105	Increased expression of monocarboxylate transporters 1, 2, and 4 in colorectal carcinomas. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2008, 452, 139-146.	1.4	211
106	A New Model of Laryngitis: Neuropeptide, Cyclooxygenase, and Cytokine Profile. Laryngoscope, 2008, 118, 78-86.	1.1	13
107	Induction of COX-2 expression by acrolein in the rat model of hemorrhagic cystitis. Experimental and Toxicologic Pathology, 2008, 59, 425-430.	2.1	12
108	Increasing Expression of Monocarboxylate Transporters 1 and 4 Along Progression to Invasive Cervical Carcinoma. International Journal of Gynecological Pathology, 2008, 27, 568-574.	0.9	84

#	Article	IF	CITATIONS
109	Cyclooxygenase-2 and Epidermal Growth Factor Receptor Expressions in Different Histological Subtypes of Cervical Carcinomas. International Journal of Gynecological Pathology, 2007, 26, 235-241.	0.9	21
110	Immunohistochemical expression of VEGF-A and its ligands in non-neoplastic lesions of the breast sampling-assisted by dynamic angiothermography. Oncology Reports, 2007, , .	1.2	1
111	Lymphatic vessel density and epithelial D2-40 immunoreactivity in pre-invasive and invasive lesions of the uterine cervix. Gynecologic Oncology, 2007, 107, 45-51.	0.6	43
112	Immunohistochemical expression and distribution of VEGFRâ€3 in malignant mesothelioma. Diagnostic Cytopathology, 2007, 35, 786-791.	0.5	18
113	Cyclooxygenase-2 expression on ifosfamide-induced hemorrhagic cystitis in rats. Journal of Cancer Research and Clinical Oncology, 2007, 134, 19-27.	1.2	15
114	EGFR amplification and lack of activating mutations in metaplastic breast carcinomas. Journal of Pathology, 2006, 209, 445-453.	2.1	230
115	Functional Purification of the Monocarboxylate Transporter of the Yeast Candida utilis. Biotechnology Letters, 2006, 28, 1221-1226.	1.1	3
116	Functional expression of the lactate permease Jen1p of Saccharomyces cerevisiae in Pichia pastoris. Biochemical Journal, 2003, 376, 781-787.	1.7	35
117	l–[U–14C]Lactate binding to a 43ÂkDa protein in plasma membranes of Candida utilis. Microbiology (United Kingdom), 2000, 146, 695-699.	0.7	1