
Scott F Sieg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3242877/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plasma Levels of Bacterial DNA Correlate with Immune Activation and the Magnitude of Immune Restoration in Persons with Antiretroviralâ€Treated HIV Infection. Journal of Infectious Diseases, 2009, 199, 1177-1185.	1.9	527
2	Human epithelial Î ² -defensins 2 and 3 inhibit HIV-1 replication. Aids, 2003, 17, F39-F48.	1.0	388
3	Human β-defensin-3 activates professional antigen-presenting cells via Toll-like receptors 1 and 2. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18631-18635.	3.3	321
4	Predictive Value of Plasma HIV RNA Level on Rate of CD4 T-Cell Decline in Untreated HIV Infection. JAMA - Journal of the American Medical Association, 2006, 296, 1498.	3.8	288
5	Perforin Expression Directly Ex Vivo by HIV-Specific CD8+ T-Cells Is a Correlate of HIV Elite Control. PLoS Pathogens, 2010, 6, e1000917.	2.1	284
6	Immunologic Failure Despite Suppressive Antiretroviral Therapy Is Related to Activation and Turnover of Memory CD4 Cells. Journal of Infectious Diseases, 2011, 204, 1217-1226.	1.9	265
7	Increased tissue factor expression on circulating monocytes in chronic HIV infection: relationship to in vivo coagulation and immune activation. Blood, 2010, 115, 161-167.	0.6	241
8	Abnormal activation and cytokine spectra in lymph nodes of people chronically infected with HIV-1. Blood, 2007, 109, 4272-4279.	0.6	175
9	Interferon- \hat{I}_{\pm} Is the Primary Plasma Type-I IFN in HIV-1 Infection and Correlates with Immune Activation and Disease Markers. PLoS ONE, 2013, 8, e56527.	1.1	146
10	TLR9 stimulation drives naÃ⁻ve B cells to proliferate and to attain enhanced antigen presenting function. European Journal of Immunology, 2007, 37, 2205-2213.	1.6	132
11	Toll-Like Receptor Ligands Induce Human T Cell Activation and Death, a Model for HIV Pathogenesis. PLoS ONE, 2008, 3, e1915.	1.1	120
12	CD8 T-Cell Expansion and Inflammation Linked to CMV Coinfection in ART-treated HIV Infection. Clinical Infectious Diseases, 2016, 62, 392-396.	2.9	114
13	IL-15 promotes activation and expansion of CD8+ T cells in HIV-1 infection. Journal of Clinical Investigation, 2016, 126, 2745-2756.	3.9	97
14	Oxidized LDL Levels Are Increased in HIV Infection and May Drive Monocyte Activation. Journal of Acquired Immune Deficiency Syndromes (1999), 2015, 69, 154-160.	0.9	85
15	Role of the Fas/Fas Ligand Apoptotic Pathway in Human Immunodeficiency Virus Type 1 Disease. Journal of Virology, 1998, 72, 6279-6282.	1.5	80
16	Inflammatory Cytokines Drive CD4+ T-Cell Cycling and Impaired Responsiveness to Interleukin 7: Implications for Immune Failure in HIV Disease. Journal of Infectious Diseases, 2014, 210, 619-629.	1.9	77
17	The Toll-like receptor 1/2 agonists Pam3CSK4 and human β-defensin-3 differentially induce interleukin-10 and nuclear factor-l̂ºB signalling patterns in human monocytes. Immunology, 2011, 134, 151-160.	2.0	72
18	Exosomes derived from HIV-1-infected cells promote growth and progression of cancer via HIV TAR RNA. Nature Communications, 2018, 9, 4585.	5.8	67

#	Article	IF	CITATIONS
19	Cycling CD4+ T cells in HIV-infected immune nonresponders have mitochondrial dysfunction. Journal of Clinical Investigation, 2018, 128, 5083-5094.	3.9	67
20	The Yin and Yang of Human Beta-Defensins in Health and Disease. Frontiers in Immunology, 2012, 3, 294.	2.2	59
21	Inflammation Perturbs the IL-7 Axis, Promoting Senescence and Exhaustion that Broadly Characterize Immune Failure in Treated HIV Infection. Journal of Acquired Immune Deficiency Syndromes (1999), 2016, 71, 483-492.	0.9	59
22	Interleukinâ€7 Receptor Signaling Is Deficient in CD4 ⁺ T Cells from HIVâ€Infected Persons and Is Inversely Associated with Aging. Journal of Infectious Diseases, 2009, 199, 1019-1028.	1.9	53
23	HIV-1 infection impairs cell cycle progression of CD4+ T cells without affecting early activation responses. Journal of Clinical Investigation, 2001, 108, 757-764.	3.9	53
24	Reduced Naive CD4 T Cell Numbers and Impaired Induction of CD27 in Response to T Cell Receptor Stimulation Reflect a State of Immune Activation in Chronic Hepatitis C Virus Infection. Journal of Infectious Diseases, 2011, 203, 635-645.	1.9	49
25	Differential Expression of Interleukin-2 and Gamma Interferon in Human Immunodeficiency Virus Disease. Journal of Virology, 2001, 75, 9983-9985.	1.5	44
26	Peripheral Sâ€Phase T Cells in HIV Disease Have a Central Memory Phenotype and Rarely Have Evidence of Recent T Cell Receptor Engagement. Journal of Infectious Diseases, 2005, 192, 62-70.	1.9	42
27	Interferon-Alpha Administration Enhances CD8+ T Cell Activation in HIV Infection. PLoS ONE, 2012, 7, e30306.	1.1	42
28	Desensitization to type I interferon in HIV-1 infection correlates with markers of immune activation and disease progression. Blood, 2009, 113, 5497-5505.	0.6	41
29	Altered Monocyte and Endothelial Cell Adhesion Molecule Expression Is Linked to Vascular Inflammation in Human Immunodeficiency Virus Infection. Open Forum Infectious Diseases, 2016, 3, ofw224.	0.4	41
30	Close Link between CD4+and CD8+T Cell Proliferation Defects in Patients with Human Immunodeficiency Virus Disease and Relationship to Extended Periods of CD4+Lymphopenia. Journal of Infectious Diseases, 2002, 185, 1401-1416.	1.9	39
31	Cyclosporin A Provides No Sustained Immunologic Benefit to Persons with Chronic HIVâ€I Infection Starting Suppressive Antiretroviral Therapy: Results of a Randomized, Controlled Trial of the AIDS Clinical Trials Group A5138. Journal of Infectious Diseases, 2006, 194, 1677-1685.	1.9	39
32	Impaired Monocyte Maturation in Response to CpG Oligodeoxynucleotide Is Related to Viral RNA Levels in Human Immunodeficiency Virus Disease and Is at Least Partially Mediated by Deficiencies in Alpha/Beta Interferon Responsiveness and Production. Journal of Virology, 2005, 79, 4109-4119.	1.5	37
33	Prospective Analysis of Lipid Composition Changes with Antiretroviral Therapy and Immune Activation in Persons Living with HIV. Pathogens and Immunity, 2017, 2, 376.	1.4	36
34	Inflammatory Function of CX3CR1 ⁺ CD8 ⁺ T Cells in Treated HIV Infection Is Modulated by Platelet Interactions. Journal of Infectious Diseases, 2016, 214, 1808-1816.	1.9	35
35	Interferon- \hat{I} ± differentially rescues CD4 and CD8 T cells from apoptosis in HIV infection. Aids, 2006, 20, 1379-1389.	1.0	34
36	Impaired Naive and Memory B-Cell Responsiveness to TLR9 Stimulation in Human Immunodeficiency Virus Infection. Journal of Virology, 2008, 82, 7837-7845.	1.5	34

#	Article	IF	CITATIONS
37	Altered Lipidome Composition Is Related to Markers of Monocyte and Immune Activation in Antiretroviral Therapy Treated Human Immunodeficiency Virus (HIV) Infection and in Uninfected Persons. Frontiers in Immunology, 2019, 10, 785.	2.2	34
38	Differential Activity of Soluble versus Cellular Fas Ligand: Regulation by an Accessory Molecule. Cellular Immunology, 1999, 195, 89-95.	1.4	32
39	Impaired T-cell responses to sphingosine-1-phosphate in HIV-1 infected lymph nodes. Blood, 2013, 121, 2914-2922.	0.6	31
40	Human β defensinâ€3 induces chemokines from monocytes and macrophages: diminished activity in cells from <scp>HIV</scp> â€infected persons. Immunology, 2013, 140, 413-420.	2.0	30
41	Neonatal T-cell maturation and homing receptor responses to Toll-like receptor ligands differ from those of adult naive T cells: relationship to prematurity. Pediatric Research, 2012, 71, 136-143.	1.1	29
42	Presentation of Soluble Antigens to CD8+ T Cells by CpG Oligodeoxynucleotide-Primed Human Naive B Cells. Journal of Immunology, 2011, 186, 2080-2086.	0.4	28
43	Impaired Induction of CD27 and CD28 Predicts Naive CD4 T Cell Proliferation Defects in HIV Disease. Journal of Immunology, 2007, 179, 3543-3549.	0.4	26
44	Endosomal tollâ€like receptors play a key role in activation of primary human monocytes by cowpea mosaic virus. Immunology, 2020, 159, 183-192.	2.0	26
45	Decreased IL-7 Responsiveness Is Related to Oxidative Stress in HIV Disease. PLoS ONE, 2013, 8, e58764.	1.1	26
46	Altered Monocyte Phenotype in HIV-1 Infection Tends to Normalize with Integrase-Inhibitor-Based Antiretroviral Therapy. PLoS ONE, 2015, 10, e0139474.	1.1	25
47	Responsiveness to IL-7 but not to IFN-α is diminished in CD4+ T cells from treated HIV infected patients who experience poor CD4+ T-cell recovery. Aids, 2016, 30, 2033-2042.	1.0	25
48	Cycling Memory CD4 ⁺ T Cells in HIV Disease Have a Diverse T Cell Receptor Repertoire and a Phenotype Consistent with Bystander Activation. Journal of Virology, 2014, 88, 5369-5380.	1.5	24
49	Cytomegalovirus Coinfection Is Associated with Increased Vascular-Homing CD57+ CD4 T Cells in HIV Infection. Journal of Immunology, 2020, 204, 2722-2733.	0.4	23
50	Impaired TCR-Mediated Induction of Ki67 by Naive CD4+ T Cells Is Only Occasionally Corrected by Exogenous IL-2 in HIV-1 Infection. Journal of Immunology, 2003, 171, 5208-5214.	0.4	21
51	Macrophage maturation from blood monocytes is altered in people with HIV, and is linked to serum lipid profiles and activation indices: A model for studying atherogenic mechanisms. PLoS Pathogens, 2020, 16, e1008869.	2.1	21
52	Membrane damage and repair in primary monocytes exposed to human β-defensin-3. Journal of Leukocyte Biology, 2012, 92, 1083-1091.	1.5	20
53	Human β Defensin-3 Increases CD86 Expression on Monocytes by Activating the ATP-Gated Channel P2X7. Journal of Immunology, 2015, 195, 4438-4445.	0.4	20
54	SIV/SHIV Infection Triggers Vascular Inflammation, Diminished Expression of Krüppel-like Factor 2 and Endothelial Dysfunction. Journal of Infectious Diseases, 2016, 213, 1419-1427.	1.9	20

#	Article	IF	CITATIONS
55	Pre-vaccine plasma levels of soluble inflammatory indices negatively predict responses to HAV, HBV, and tetanus vaccines in HCV and HIV infection. Vaccine, 2018, 36, 453-460.	1.7	19
56	S-phase entry leads to cell death in circulating T cells from HIV-infected persons. Journal of Leukocyte Biology, 2008, 83, 1382-1387.	1.5	18
57	CD56bright NK IL-7Rα expression negatively associates with HCV level, and IL-7-induced NK function is impaired during HCV and HIV infections. Journal of Leukocyte Biology, 2017, 102, 171-184.	1.5	18
58	Probing the Interface of HIV and Inflammaging. Current HIV/AIDS Reports, 2021, 18, 198-210.	1.1	18
59	"Inflammescent" CX3CR1+CD57+ CD8 T cells are generated and expanded by IL-15. JCI Insight, 2020, 5, .	2.3	18
60	Interleukin-7 Enhances Proliferation Responses to T-Cell Receptor Stimulation in Nailُve CD4 + T Cells from Human Immunodeficiency Virus-Infected Persons. Journal of Virology, 2007, 81, 12670-12674.	1.5	17
61	CX3CL1 and IL-15 Promote CD8 T cell chemoattraction in HIV and in atherosclerosis. PLoS Pathogens, 2020, 16, e1008885.	2.1	17
62	Using Glycosaminoglycan/Chemokine Interactions for the Long-Term Delivery of 5P12-RANTES in HIV Prevention. Molecular Pharmaceutics, 2013, 10, 3564-3573.	2.3	16
63	TGF-β inhibits IL-7-induced proliferation in memory but not naive human CD4+ T cells. Journal of Leukocyte Biology, 2017, 102, 499-506.	1.5	16
64	Preferential S Phase Entry and Apoptosis of CD4+ T Lymphocytes of HIV-1-Infected Patients after in Vitro Cultivation. Clinical Immunology, 2000, 97, 241-247.	1.4	15
65	Plasmacytoid Dendritic Cells Mediate Synergistic Effects of HIV and Lipopolysaccharide on CD27 ⁺ IgD [–] Memory B Cell Apoptosis. Journal of Virology, 2014, 88, 11430-11441.	1.5	14
66	Interferon-αinhibits CD4 T cell responses to interleukin-7 and interleukin-2 and selectively interferes with Akt signaling. Journal of Leukocyte Biology, 2015, 97, 1139-1146.	1.5	14
67	CD8+ T-Cell–Derived Tumor Necrosis Factor Can Induce Tissue Factor Expression on Monocytes. Journal of Infectious Diseases, 2019, 220, 73-77.	1.9	14
68	Proteome and Protein Network Analyses of Memory T Cells Find Altered Translation and Cell Stress Signaling in Treated Human Immunodeficiency Virus Patients Exhibiting Poor CD4 Recovery. Open Forum Infectious Diseases, 2016, 3, ofw037.	0.4	11
69	Monitoring clinical trials of therapeutic vaccines in HIV infection: role of treatment interruption. Current Opinion in HIV and AIDS, 2007, 2, 56-61.	1.5	9
70	CCR5 and its ligands: a new axis of evil?. Nature Immunology, 2007, 8, 1283-1285.	7.0	8
71	Dissociation of CD154 and Cytokine Expression Patterns in CD38+ CD4+ Memory T Cells in Chronic HIV-1 Infection. Journal of Acquired Immune Deficiency Syndromes (1999), 2010, 55, 439-445.	0.9	8
72	In vitro naÃ ⁻ ve T cell proliferation failure predicts poor post-immunization responses to neoantigen, but not recall antigens, in HIV-infection. Clinical Immunology, 2010, 136, 400-408.	1.4	8

#	Article	IF	CITATIONS
73	Diminished responsiveness to human β-defensin-3 and decreased TLR1 expression on monocytes and mDCs from HIV-1-infected patients. Journal of Leukocyte Biology, 2012, 92, 1103-1109.	1.5	8
74	Cytomegalovirus-specific responses of CD38+ memory T cells are skewed towards IFN-Î ³ and dissociated from CD154 in HIV-1 infection. Aids, 2014, 28, 311-316.	1.0	8
75	Recycled IL-7 Can Be Delivered to Neighboring T Cells. Journal of Immunology, 2015, 194, 4698-4704.	0.4	7
76	CD8 ⁺ CD73 ⁺ T cells in the tumor microenvironment of head and neck cancer patients are linked to diminished T cell infiltration and activation in tumor tissue. European Journal of Immunology, 2020, 50, 2055-2066.	1.6	7
77	Interleukin-7 Biology in HIV Disease and the Path to Immune Reconstitution. Current HIV Research, 2012, 10, 341-347.	0.2	6
78	Novel Criteria for Diagnosing Acute and Early Human Immunodeficiency Virus Infection in a Multinational Study of Early Antiretroviral Therapy Initiation. Clinical Infectious Diseases, 2021, 73, e643-e651.	2.9	5
79	Frequencies of FoxP3+ naìve T cells are related to both viral load and naìve T cell proliferation responses in HIV disease. Journal of Leukocyte Biology, 2011, 90, 621-628.	1.5	4
80	Microparticle delivery of Interleukinâ€7 to boost Tâ€cell proliferation and survival. Biotechnology and Bioengineering, 2012, 109, 1835-1843.	1.7	4
81	Fatty acids secreted from head and neck cancer induce M2-like Macrophages. Journal of Leukocyte Biology, 2022, 112, 617-628.	1.5	4
82	Highly oxidized lowâ€density lipoprotein mediates activation of monocytes but does not confer interleukinâ€1 β secretion nor interleukinâ€15 transpresentation function. Immunology, 2020, 159, 221-230.	2.0	3
83	Persistent Inflammation in Treated HIV Disease. Journal of Infectious Diseases, 2016, 214, S43-S43.	1.9	2
84	Reply to Barrett, et al. Clinical Infectious Diseases, 2016, 62, 1468-1469.	2.9	1
85	Plasma lipidome abnormalities in people with HIV initiating antiretroviral therapy. Translational Medicine Communications, 2020, 5, .	0.5	1
86	Human Î ² -Defensin-3 is Associated With Platelet-Derived Extracellular Vesicles and is a Potential Contributor to Endothelial Dysfunction. Frontiers in Molecular Biosciences, 2022, 9, 824954.	1.6	1