Isabelle Le Huërou-Luron

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3242714/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Breast- <i>v.</i> formula-feeding: impacts on the digestive tract and immediate and long-term health effects. Nutrition Research Reviews, 2010, 23, 23-36.	2.1	343
2	Critical review evaluating the pig as a model for human nutritional physiology. Nutrition Research Reviews, 2016, 29, 60-90.	2.1	204
3	Intrauterine Growth Restriction Modifies the Developmental Pattern of Intestinal Structure, Transcriptomic Profile, and Bacterial Colonization in Neonatal Pigs. Journal of Nutrition, 2010, 140, 925-931.	1.3	124
4	<i>In vivo</i> digestion of infant formula in piglets: protein digestion kinetics and release of bioactive peptides. British Journal of Nutrition, 2012, 108, 2105-2114.	1.2	79
5	Infant formula interface and fat source impact on neonatal digestion and gut microbiota. European Journal of Lipid Science and Technology, 2015, 117, 1500-1512.	1.0	60
6	A mixture of milk and vegetable lipids in infant formula changes gut digestion, mucosal immunity and microbiota composition in neonatal piglets. European Journal of Nutrition, 2018, 57, 463-476.	1.8	53
7	Maternal Short-Chain Fructooligosaccharide Supplementation Influences Intestinal Immune System Maturation in Piglets. PLoS ONE, 2014, 9, e107508.	1.1	52
8	The Level of Protein in Milk Formula Modifies Ileal Sensitivity to LPS Later in Life in a Piglet Model. PLoS ONE, 2011, 6, e19594.	1.1	46
9	Effect of Milk Formula Protein Content on Intestinal Barrier Function in a Porcine Model of LBW Neonates. Pediatric Research, 2011, 69, 4-9.	1.1	44
10	Early Weaning Stimulates Intestinal Brush Border Enzyme Activities in Piglets, Mainly at the Posttranscriptional Level. Journal of Pediatric Gastroenterology and Nutrition, 2005, 41, 401-410.	0.9	41
11	Maternal short-chain fructo-oligosaccharide supplementation increases intestinal cytokine secretion, goblet cell number, butyrate concentration and <i>Lawsonia intracellularis</i> humoral vaccine response in weaned pigs. British Journal of Nutrition, 2017, 117, 83-92.	1.2	38
12	Impact of Intrauterine Growth Retardation and Early Protein Intake on Growth, Adipose Tissue, and the Insulin-Like Growth Factor System in Piglets. Pediatric Research, 2009, 65, 45-50.	1.1	34
13	Addition of dairy lipids and probiotic Lactobacillus fermentum in infant formula programs gut microbiota and entero-insular axis in adult minipigs. Scientific Reports, 2018, 8, 11656.	1.6	33
14	Perinatal shortâ€chain fructooligosaccharides program intestinal microbiota and improve enteroinsular axis function and inflammatory status in highâ€fat dietâ€fed adult pigs. FASEB Journal, 2019, 33, 301-313.	0.2	26
15	Short-chain fructooligosaccharide supplementation during gestation and lactation or after weaning differentially impacts pig growth and IgA response to influenza vaccination. Journal of Functional Foods, 2016, 24, 307-315.	1.6	20
16	Spontaneous intra-uterine growth restriction modulates the endocrine status and the developmental expression of genes in porcine fetal and neonatal adipose tissue. General and Comparative Endocrinology, 2013, 194, 208-216.	0.8	19
17	The protein level of isoenergetic formulae does not modulate postprandial insulin secretion in piglets and has no consequences on later glucose tolerance. British Journal of Nutrition, 2012, 108, 102-112.	1.2	15
18	Health benefits of dairy lipids and MFGM in infant formula. OCL - Oilseeds and Fats, Crops and Lipids, 2018, 25, D306.	0.6	14

#	Article	IF	CITATIONS
19	Comparing the intestinal transcriptome of Meishan and Large White piglets during late fetal development reveals genes involved in glucose and lipid metabolism and immunity as valuable clues of intestinal maturity. BMC Genomics, 2017, 18, 647.	1.2	12
20	Maternal 18:3n-3 favors piglet intestinal passage of LPS and promotes intestinal anti-inflammatory response to this bacterial ligand. Journal of Nutritional Biochemistry, 2014, 25, 1090-1098.	1.9	9
21	New Insights Into Microbiota Modulation-Based Nutritional Interventions for Neurodevelopmental Outcomes in Preterm Infants. Frontiers in Microbiology, 2021, 12, 676622.	1.5	9
22	Addition of Dairy Lipids and Probiotic Lactobacillus fermentum in Infant Formulas Modulates Proteolysis and Lipolysis With Moderate Consequences on Gut Physiology and Metabolism in Yucatan Piglets. Frontiers in Nutrition, 2021, 8, 615248.	1.6	5
23	Maternal Supplementation of Food Ingredient (Prebiotic) or Food Contaminant (Mycotoxin) Influences Mucosal Immune System in Piglets. Nutrients, 2020, 12, 2115.	1.7	3