Tim Hubbard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3241949/publications.pdf

Version: 2024-02-01

4653 4988 120,089 170 85 167 citations h-index g-index papers 180 180 180 110177 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Initial sequencing and analysis of the human genome. Nature, 2001, 409, 860-921.	13.7	21,074
2	An integrated encyclopedia of DNA elements in the human genome. Nature, 2012, 489, 57-74.	13.7	15,516
3	Initial sequencing and comparative analysis of the mouse genome. Nature, 2002, 420, 520-562.	13.7	6,319
4	SCOP: a structural classification of proteins database for the investigation of sequences and structures. Journal of Molecular Biology, 1995, 247, 536-540.	2.0	5,400
5	Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 2007, 447, 799-816.	13.7	4,709
6	Landscape of transcription in human cells. Nature, 2012, 489, 101-108.	13.7	4,484
7	The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Research, 2012, 22, 1775-1789.	2.4	4,428
8	Finishing the euchromatic sequence of the human genome. Nature, 2004, 431, 931-945.	13.7	4,232
9	GENCODE: The reference human genome annotation for The ENCODE Project. Genome Research, 2012, 22, 1760-1774.	2.4	4,217
10	SCOP: A structural classification of proteins database for the investigation of sequences and structures. Journal of Molecular Biology, 1995, 247, 536-540.	2.0	3,952
11	The zebrafish reference genome sequence and its relationship to the human genome. Nature, 2013, 496, 498-503.	13.7	3,708
12	A census of human cancer genes. Nature Reviews Cancer, 2004, 4, 177-183.	12.8	2,868
13	GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Research, 2019, 47, D766-D773.	6.5	2,350
14	The ENCODE (ENCyclopedia Of DNA Elements) Project. Science, 2004, 306, 636-640.	6.0	2,121
15	International network of cancer genome projects. Nature, 2010, 464, 993-998.	13.7	2,114
16	The Ensembl genome database project. Nucleic Acids Research, 2002, 30, 38-41.	6.5	1,411
17	A User's Guide to the Encyclopedia of DNA Elements (ENCODE). PLoS Biology, 2011, 9, e1001046.	2.6	1,257
18	Ensembl 2014. Nucleic Acids Research, 2014, 42, D749-D755.	6.5	1,211

#	Article	IF	CITATIONS
19	The DNA sequence of human chromosome 22. Nature, 1999, 402, 489-495.	13.7	1,086
20	The UK10K project identifies rare variants in health and disease. Nature, 2015, 526, 82-90.	13.7	1,014
21	The DNA sequence of the human X chromosome. Nature, 2005, 434, 325-337.	13.7	985
22	Data growth and its impact on the SCOP database: new developments. Nucleic Acids Research, 2007, 36, D419-D425.	6.5	854
23	Ensembl 2012. Nucleic Acids Research, 2012, 40, D84-D90.	6.5	840
24	SCOP database in 2004: refinements integrate structure and sequence family data. Nucleic Acids Research, 2004, 32, 226D-229.	6.5	815
25	Evaluation of GRCh38 and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly. Genome Research, 2017, 27, 849-864.	2.4	728
26	Ensembl 2009. Nucleic Acids Research, 2009, 37, D690-D697.	6.5	721
27	Ensembl 2007. Nucleic Acids Research, 2007, 35, D610-D617.	6.5	699
28	Assessment of transcript reconstruction methods for RNA-seq. Nature Methods, 2013, 10, 1177-1184.	9.0	679
29	Defining functional DNA elements in the human genome. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6131-6138.	3.3	635
30	Ensembl 2011. Nucleic Acids Research, 2011, 39, D800-D806.	6.5	630
31	A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nature Biotechnology, 2008, 26, 779-785.	9.4	619
32	SCOP: a Structural Classification of Proteins database. Nucleic Acids Research, 2000, 28, 257-259.	6.5	533
33	GENCODE: producing a reference annotation for ENCODE. Genome Biology, 2006, 7, S4.	13.9	533
34	Using neural networks for prediction of the subcellular location of proteins. Nucleic Acids Research, 1998, 26, 2230-2236.	6.5	517
35	Sequence comparisons using multiple sequences detect three times as many remote homologues as pairwise methods. Journal of Molecular Biology, 1998, 284, 1201-1210.	2.0	498
36	Assessing sequence comparison methods with reliable structurally identified distant evolutionary relationships. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 6073-6078.	3.3	493

#	Article	IF	Citations
37	SCOP: a Structural Classification of Proteins database. Nucleic Acids Research, 1997, 25, 236-239.	6.5	481
38	The consensus coding sequence (CCDS) project: Identifying a common protein-coding gene set for the human and mouse genomes. Genome Research, 2009, 19, 1316-1323.	2.4	476
39	Systematic evaluation of spliced alignment programs for RNA-seq data. Nature Methods, 2013, 10, 1185-1191.	9.0	467
40	Modernizing Reference Genome Assemblies. PLoS Biology, 2011, 9, e1001091.	2.6	458
41	Ensembl 2008. Nucleic Acids Research, 2007, 36, D707-D714.	6.5	440
42	SCOP database in 2002: refinements accommodate structural genomics. Nucleic Acids Research, 2002, 30, 264-267.	6.5	403
43	Accurate and Sensitive Peptide Identification with Mascot Percolator. Journal of Proteome Research, 2009, 8, 3176-3181.	1.8	399
44	The Solution Structure of the S1 RNA Binding Domain: A Member of an Ancient Nucleic Acid–Binding Fold. Cell, 1997, 88, 235-242.	13.5	391
45	An Overview of Ensembl. Genome Research, 2004, 14, 925-928.	2.4	391
46	Ensembl 2005. Nucleic Acids Research, 2004, 33, D447-D453.	6.5	368
47	An integrated resource for genome-wide identification and analysis of human tissue-specific differentially methylated regions (tDMRs). Genome Research, 2008, 18, 1518-1529.	2.4	350
48	An integrated resource for genome-wide identification and analysis of human tissue-specific differentially methylated regions (tDMRs). Genome Research, 2008, 18, 1518-1529. Ensembl 2006. Nucleic Acids Research, 2006, 34, D556-D561.	2.4	350
	differentially methylated regions (tDMRs). Genome Research, 2008, 18, 1518-1529.		
48	differentially methylated regions (tDMRs). Genome Research, 2008, 18, 1518-1529. Ensembl 2006. Nucleic Acids Research, 2006, 34, D556-D561.	6.5	331
48	Ensembl 2006. Nucleic Acids Research, 2006, 34, D556-D561. A physical map of the mouse genome. Nature, 2002, 418, 743-750.	6.5	331
48 49 50	Ensembl 2006. Nucleic Acids Research, 2006, 34, D556-D561. A physical map of the mouse genome. Nature, 2002, 418, 743-750. DNA sequence and analysis of human chromosome 9. Nature, 2004, 429, 369-374. The 100 000 Genomes Project: bringing whole genome sequencing to the NHS. BMJ: British Medical	6.5 13.7 13.7	331 316 314
48 49 50 51	differentially methylated regions (tDMRs). Genome Research, 2008, 18, 1518-1529. Ensembl 2006. Nucleic Acids Research, 2006, 34, D556-D561. A physical map of the mouse genome. Nature, 2002, 418, 743-750. DNA sequence and analysis of human chromosome 9. Nature, 2004, 429, 369-374. The 100â€‱000 Genomes Project: bringing whole genome sequencing to the NHS. BMJ: British Medical Journal, 2018, 361, k1687.	6.5 13.7 13.7	331 316 314 312

#	Article	IF	Citations
55	The GENCODE pseudogene resource. Genome Biology, 2012, 13, R51.	13.9	273
56	The vertebrate genome annotation (Vega) database. Nucleic Acids Research, 2007, 36, D753-D760.	6.5	260
57	Ensembl's 10th year. Nucleic Acids Research, 2010, 38, D557-D562.	6.5	251
58	Prepublication data sharing. Nature, 2009, 461, 168-170.	13.7	243
59	Computational Detection and Location of Transcription Start Sites in Mammalian Genomic DNA. Genome Research, 2002, 12, 458-461.	2.4	238
60	Knowledge-based protein modelling and design. FEBS Journal, 1988, 172, 513-520.	0.2	236
61	EGASP: the human ENCODE Genome Annotation Assessment Project. Genome Biology, 2006, 7, S2.	13.9	228
62	Critical assessment of methods of protein structure prediction (CASP)-round V. Proteins: Structure, Function and Bioinformatics, 2003, 53, 334-339.	1.5	221
63	Intermediate sequences increase the detection of homology between sequences. Journal of Molecular Biology, 1997, 273, 349-354.	2.0	217
64	Ensembl 2002: accommodating comparative genomics. Nucleic Acids Research, 2003, 31, 38-42.	6.5	216
65	The DNA sequence and biological annotation of human chromosome 1. Nature, 2006, 441, 315-321.	13.7	211
66	SCOP: a Structural Classification of Proteins database. Nucleic Acids Research, 1999, 27, 254-256.	6.5	208
67	Critical assessment of methods of protein structure prediction—Round VII. Proteins: Structure, Function and Bioinformatics, 2007, 69, 3-9.	1.5	199
68	Making sense of big data in health research: Towards an EU action plan. Genome Medicine, 2016, 8, 71.	3 . 6	190
69	Comparison of solvent-inaccessible cores of homologous proteins: definitions useful for protein modelling. Protein Engineering, Design and Selection, 1987, 1, 159-171.	1.0	185
70	Population statistics of protein structures: lessons from structural classifications. Current Opinion in Structural Biology, 1997, 7, 369-376.	2.6	173
71	Prominent use of distal 5' transcription start sites and discovery of a large number of additional exons in ENCODE regions. Genome Research, 2007, 17, 746-759.	2.4	173
72	Large-Scale Mutagenesis in p19ARF- and p53-Deficient Mice Identifies Cancer Genes and Their Collaborative Networks. Cell, 2008, 133, 727-741.	13.5	167

#	Article	IF	CITATIONS
73	Critical assessment of methods of protein structure prediction (CASP)â€"Round 6. Proteins: Structure, Function and Bioinformatics, 2005, 61, 3-7.	1.5	162
74	Critical assessment of methods of protein structure prediction (CASP): Round IV. Proteins: Structure, Function and Bioinformatics, 2001, 45, 2-7.	1.5	146
75	Ensembl 2004. Nucleic Acids Research, 2004, 32, 468D-470.	6.5	146
76	Global implementation of genomic medicine: We are not alone. Science Translational Medicine, 2015, 7, 290ps13.	5.8	146
77	Post-publication sharing of data and tools. Nature, 2009, 461, 171-173.	13.7	142
78	Current status and new features of the Consensus Coding Sequence database. Nucleic Acids Research, 2014, 42, D865-D872.	6.5	140
79	Critical assessment of methods of protein structure prediction (CASP): Round III. Proteins: Structure, Function and Bioinformatics, 1999, 37, 2-6.	1.5	137
80	DNA sequence of human chromosome 17 and analysis of rearrangement in the human lineage. Nature, 2006, 440, 1045-1049.	13.7	130
81	The Vertebrate Genome Annotation (Vega) database. Nucleic Acids Research, 2004, 33, D459-D465.	6.5	125
82	Perspectives on ENCODE. Nature, 2020, 583, 693-698.	13.7	123
83	Critical assessment of methods of protein structure prediction (CASP): Round II., 1997, 29, 2-6.		114
84	Shotgun proteomics aids discovery of novel protein-coding genes, alternative splicing, and "resurrected―pseudogenes in the mouse genome. Genome Research, 2011, 21, 756-767.	2.4	113
85	PROTEIN FOLDS IN THE ALL-Î ² AND ALL-α CLASSES. Annual Review of Biophysics and Biomolecular Structure, 1997, 26, 597-627.	18.3	104
86	Critical assessment of methods of protein structure prediction (CASP): Round III., 1999, 37, 2.		103
87	NestedMICA: sensitive inference of over-represented motifs in nucleic acid sequence. Nucleic Acids Research, 2005, 33, 1445-1453.	6.5	100
88	Dalliance: interactive genome viewing on the web. Bioinformatics, 2011, 27, 889-890.	1.8	99
89	The DNA sequence and analysis of human chromosome 13. Nature, 2004, 428, 522-528.	13.7	91
90	A New Trade Framework for Global Healthcare R&D. PLoS Biology, 2004, 2, e52.	2.6	87

#	Article	IF	Citations
91	Integrating biological data – the Distributed Annotation System. BMC Bioinformatics, 2008, 9, S3.	1.2	87
92	Gene duplications in H. influenzae. Nature, 1995, 378, 140-140.	13.7	82
93	Petabyte-scale innovations at the European Nucleotide Archive. Nucleic Acids Research, 2009, 37, D19-D25.	6.5	82
94	Critical assessment of methods of protein structure prediction (CASP): Round II., 1997, 29, 2.		82
95	[37] Understanding protein structure: Using scop for fold interpretation. Methods in Enzymology, 1996, 266, 635-643.	0.4	80
96	The role of heat-shock and chaperone proteins in protein folding: possible molecular mechanisms. Protein Engineering, Design and Selection, 1991, 4, 711-717.	1.0	78
97	Assessment of novel fold targets in CASP4: Predictions of three-dimensional structures, secondary structures, and interresidue contacts. Proteins: Structure, Function and Bioinformatics, 2001, 45, 98-118.	1.5	76
98	The DNA sequence and comparative analysis of human chromosome 10. Nature, 2004, 429, 375-381.	13.7	74
99	SISYPHUSâ€"structural alignments for proteins with non-trivial relationships. Nucleic Acids Research, 2007, 35, D253-D259.	6.5	74
100	The Origins, Evolution, and Functional Potential of Alternative Splicing in Vertebrates. Molecular Biology and Evolution, 2011, 28, 2949-2959.	3.5	74
101	Whole genome sequencing for the diagnosis of neurological repeat expansion disorders in the UK: a retrospective diagnostic accuracy and prospective clinical validation study. Lancet Neurology, The, 2022, 21, 234-245.	4.9	74
102	Fold recognition and ab initio structure predictions using hidden markov models and \hat{l}^2 -strand pair potentials. Proteins: Structure, Function and Bioinformatics, 1995, 23, 398-402.	1.5	73
103	Domain Insertions in Protein Structures. Journal of Molecular Biology, 2004, 338, 633-641.	2.0	72
104	Comparative analysis of pseudogenes across three phyla. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13361-13366.	3.3	72
105	A Comparison of Peak Callers Used for DNase-Seq Data. PLoS ONE, 2014, 9, e96303.	1.1	71
106	Integrating sequence and structural biology with DAS. BMC Bioinformatics, 2007, 8, 333.	1.2	68
107	Large-Scale Discovery of Promoter Motifs in Drosophila melanogaster. PLoS Computational Biology, 2007, 3, e7.	1.5	64
108	Evidence for Transcript Networks Composed of Chimeric RNAs in Human Cells. PLoS ONE, 2012, 7, e28213.	1.1	61

#	Article	IF	CITATIONS
109	Chromatin Accessibility Data Sets Show Bias Due to Sequence Specificity of the DNase I Enzyme. PLoS ONE, 2013, 8, e69853.	1.1	61
110	The language of mental health problems in social media. , 2016, , .		60
111	Mining the draft human genome. Nature, 2001, 409, 827-828.	13.7	58
112	Comparison of Mascot and X!Tandem Performance for Low and High Accuracy Mass Spectrometry and the Development of an Adjusted Mascot Threshold. Molecular and Cellular Proteomics, 2008, 7, 962-970.	2.5	58
113	The GENCODE exome: sequencing the complete human exome. European Journal of Human Genetics, 2011, 19, 827-831.	1.4	58
114	ddbRNA: detection of conserved secondary structures in multiple alignments. Bioinformatics, 2003, 19, 1606-1611.	1.8	53
115	Combining RT-PCR-seq and RNA-seq to catalog all genic elements encoded in the human genome. Genome Research, 2012, 22, 1698-1710.	2.4	50
116	Characterizing genetic variants for clinical action. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2014, 166, 93-104.	0.7	50
117	Analysis and assessment of ab initio threeâ€dimensional prediction, secondary structure, and contacts prediction. Proteins: Structure, Function and Bioinformatics, 1999, 37, 149-170.	1.5	50
118	RMS/Coverage graphs: A qualitative method for comparing three-dimensional protein structure predictions. Proteins: Structure, Function and Bioinformatics, 1999, 37, 15-21.	1.5	46
119	Priorities for nucleotide trace, sequence and annotation data capture at the Ensembl Trace Archive and the EMBL Nucleotide Sequence Database. Nucleic Acids Research, 2007, 36, D5-D12.	6.5	46
120	Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia. American Journal of Human Genetics, 2019, 104, 948-956.	2.6	45
121	Lessons learned from the initial sequencing of the pig genome: comparative analysis of an 8 Mb region of pig chromosome 17. Genome Biology, 2007, 8, R168.	13.9	44
122	Peter Andrew Kollman. Proteins: Structure, Function and Bioinformatics, 2001, 45, 2-3.	1.5	42
123	Adding Some SPICE to DAS. Bioinformatics, 2005, 21, ii40-ii41.	1.8	42
124	Novel Candidate Cancer Genes Identified by a Large-Scale Cross-Species Comparative Oncogenomics Approach. Cancer Research, 2010, 70, 883-895.	0.4	40
125	Discovery of Candidate Disease Genes in ENU–Induced Mouse Mutants by Large-Scale Sequencing, Including a Splice-Site Mutation in Nucleoredoxin. PLoS Genetics, 2009, 5, e1000759.	1.5	39
126	Heat-shock proteins during growth and sporulation of Bacillus subtilis. FEBS Letters, 1985, 188, 209-214.	1.3	34

#	Article	IF	Citations
127	BioJava. ACM SIGBIO Newsletter, 2000, 20, 10-12.	0.1	33
128	NestedMICA as an ab initio protein motif discovery tool. BMC Bioinformatics, 2008, 9, 19.	1.2	32
129	SCOP, Structural Classification of Proteins Database: Applications to Evaluation of the Effectiveness of Sequence Alignment Methods and Statistics of Protein Structural Data. Acta Crystallographica Section D: Biological Crystallography, 1998, 54, 1147-1154.	2.5	31
130	Open annotation offers a democratic solution to genome sequencing. Nature, 2000, 403, 825-825.	13.7	31
131	New tools and expanded data analysis capabilities at the protein structure prediction center. Proteins: Structure, Function and Bioinformatics, 2007, 69, 19-26.	1.5	31
132	Genomic anatomy of the Tyrp1 (brown) deletion complex. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3704-3709.	3.3	30
133	Developing and implementing an institute-wide data sharing policy. Genome Medicine, 2011, 3, 60.	3.6	29
134	Critical assessment of methods of protein structure prediction (CASP): Round III. Proteins: Structure, Function and Bioinformatics, 1999, 37, 2-6.	1.5	27
135	Protein design on computers. Five new proteins: Shpilka, grendel, fingerclasp, leather, and aida. Proteins: Structure, Function and Bioinformatics, 1992, 12, 105-110.	1.5	26
136	Reply to Brunet and Doolittle: Both selected effect and causal role elements can influence human biology and disease. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3366.	3.3	25
137	DATABASES ANDTOOLS FORBROWSINGGENOMES. Annual Review of Genomics and Human Genetics, 2002, 3, 293-310.	2.5	23
138	Critical assessment of methods of protein structure prediction (CASP): Round II. Proteins: Structure, Function and Bioinformatics, 1997, 29, 2-6.	1.5	22
139	CASP5 target classification. Proteins: Structure, Function and Bioinformatics, 2003, 53, 340-351.	1.5	20
140	The Protein Feature Ontology: a tool for the unification of protein feature annotations. Bioinformatics, 2008, 24, 2767-2772.	1.8	19
141	ITFoM – The IT Future of Medicine. Procedia Computer Science, 2011, 7, 26-29.	1.2	17
142	Transcriptional activity and strain-specific history of mouse pseudogenes. Nature Communications, 2020, 11, 3695.	5.8	17
143	Quality control in databanks for molecular biology. BioEssays, 2000, 22, 1024-1034.	1.2	16
144	Biological information: making it accessible and integrated (and trying to make sense of it). Bioinformatics, 2002, 18, S140-S140.	1.8	16

#	Article	IF	CITATIONS
145	Prediction of the structure of GroES and its interaction with GroEL. Proteins: Structure, Function and Bioinformatics, 1995, 22, 199-209.	1.5	14
146	Genome-wide end-sequenced BAC resources for the NOD/MrkTacâ~† and NOD/ShiLtJâ~†â~† mouse genomes. Genomics, 2010, 95, 105-110.	1.3	14
147	Cancer gene discovery in mouse and man. Biochimica Et Biophysica Acta: Reviews on Cancer, 2009, 1796, 140-161.	3.3	13
148	MaxBench: evaluation of sequence and structure comparison methods. Bioinformatics, 2002, 18, 494-495.	1.8	12
149	A machine learning strategy to identify candidate binding sites in human protein-coding sequence. BMC Bioinformatics, 2006, 7, 419.	1.2	12
150	An interactive genome browser of association results from the UK10K cohorts project. Bioinformatics, 2015, 31, 4029-4031.	1.8	12
151	Pharmacogenomic testing in paediatrics: Clinical implementation strategies. British Journal of Clinical Pharmacology, 2022, 88, 4297-4310.	1.1	12
152	Numerical criteria for the evaluation of ab initio predictions of protein structure. Proteins: Structure, Function and Bioinformatics, 1997, 29, 140-150.	1.5	12
153	iMotifs: an integrated sequence motif visualization and analysis environment. Bioinformatics, 2010, 26, 843-844.	1.8	11
154	RMS/Coverage graphs: A qualitative method for comparing threeâ€dimensional protein structure predictions. Proteins: Structure, Function and Bioinformatics, 1999, 37, 15-21.	1.5	11
155	Prediction targets of CASP4. Proteins: Structure, Function and Bioinformatics, 2001, 45, 8-12.	1.5	9
156	AnnoTrack - a tracking system for genome annotation. BMC Genomics, 2010, 11, 538.	1,2	9
157	Analysis of diagnoses extracted from electronic health records in a large mental health case register. PLoS ONE, 2017, 12, e0171526.	1.1	9
158	What can we learn from noncoding regions of similarity between genomes?. BMC Bioinformatics, 2004, 5, 131.	1.2	8
159	New horizons in sequence analysis. Current Opinion in Structural Biology, 1997, 7, 190-193.	2.6	6
160	Metamotifs - a generative model for building families of nucleotide position weight matrices. BMC Bioinformatics, 2010, 11, 348.	1.2	6
161	The Significance of Performance Ranking in CASPâ€"Response to Marti-Renom et al Structure, 2002, 10, 291-292.	1.6	5
162	Protein structure prediction: playing the fold. Trends in Biochemical Sciences, 1996, 21, 279-281.	3.7	5

#	Article	IF	CITATIONS
163	GLASS: A tool to visualize protein structure prediction data in three dimensions and evaluate their consistency., 1998, 30, 339-351.		3
164	SPEM: a parser for EMBL style flat file database entries. Bioinformatics, 1998, 14, 823-824.	1.8	2
165	A browser for expression data. Bioinformatics, 2000, 16, 402-403.	1.8	2
166	Numerical criteria for the evaluation of ab initio predictions of protein structure. Proteins: Structure, Function and Bioinformatics, 1997, 29, 140-150.	1.5	2
167	Protein structure prediction:playing the fold. Trends in Biochemical Sciences, 1996, 21, 279-281.	3.7	1
168	From identification to validation to gene count. Genome Biology, 2010, 11, .	3.8	1
169	Automated PDF highlighting to support faster curation of literature for Parkinson's and Alzheimer's disease. Database: the Journal of Biological Databases and Curation, 2017, 2017, .	1.4	1
170	Scientists on the Spot: Sequencing the human genome to influence patient healthcare. Cardiovascular Research, 2018, 114, e66-e67.	1.8	0