Manuel Bardies

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3241367/publications.pdf Version: 2024-02-01

MANUEL RADDIES

#	Article	IF	CITATIONS
1	GATE: a simulation toolkit for PET and SPECT. Physics in Medicine and Biology, 2004, 49, 4543-4561.	3.0	1,765
2	EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. European Journal of Nuclear Medicine and Molecular Imaging, 2009, 36, 2103-2110.	6.4	469
3	EANM/ESC procedural guidelines for myocardial perfusion imaging in nuclear cardiology. European Journal of Nuclear Medicine and Molecular Imaging, 2005, 32, 855-897.	6.4	467
4	THE GEANT4-DNA PROJECT. International Journal of Modeling, Simulation, and Scientific Computing, 2010, 01, 157-178.	1.4	366
5	A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications. Medical Physics, 2014, 41, 064301.	3.0	332
6	EANM Dosimetry Committee guidelines for bone marrow and whole-body dosimetry. European Journal of Nuclear Medicine and Molecular Imaging, 2010, 37, 1238-1250.	6.4	217
7	EANM Dosimetry Committee series on standard operational procedures for pre-therapeutic dosimetry I: blood and bone marrow dosimetry in differentiated thyroid cancer therapy. European Journal of Nuclear Medicine and Molecular Imaging, 2008, 35, 1405-1412.	6.4	204
8	Clinical radioimmunotherapy—the role of radiobiology. Nature Reviews Clinical Oncology, 2011, 8, 720-734.	27.6	191
9	The evidence base for the use of internal dosimetry in the clinical practice of molecular radiotherapy. European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41, 1976-1988.	6.4	179
10	EANM Dosimetry Committee guidance document: good practice of clinical dosimetry reporting. European Journal of Nuclear Medicine and Molecular Imaging, 2011, 38, 192-200.	6.4	156
11	The Impact of PET and SPECT on Dosimetry for Targeted Radionuclide Therapy. Zeitschrift Fur Medizinische Physik, 2006, 16, 47-59.	1.5	107
12	Cell Membrane is a More Sensitive Target than Cytoplasm to Dense Ionization Produced by Auger Electrons. Radiation Research, 2008, 170, 192-200.	1.5	99
13	A voxel-based mouse for internal dose calculations using Monte Carlo simulations (MCNP). Physics in Medicine and Biology, 2007, 52, 1013-1025.	3.0	88
14	Nuclear medical imaging using β+γ coincidences from 44Sc radio-nuclide with liquid xenon as detection medium. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 571, 142-145.	1.6	83
15	Advanced Monte Carlo simulations of emission tomography imaging systems with GATE. Physics in Medicine and Biology, 2021, 66, 10TR03.	3.0	82
16	Absorbed doses for internal radiotherapy from 22 beta-emitting radionuclides: beta dosimetry of small spheres. Physics in Medicine and Biology, 1994, 39, 961-981.	3.0	81
17	Comparison of Empiric Versus Whole-Body/-Blood Clearance Dosimetry–Based Approach to Radioactive Iodine Treatment in Patients with Metastases from Differentiated Thyroid Cancer. Journal of Nuclear Medicine, 2017, 58, 717-722.	5.0	81
18	Radiolabeled Antibodies for Cancer Imaging and Therapy. Methods in Molecular Biology, 2012, 907, 681-697.	0.9	61

#	Article	IF	CITATIONS
19	Implementation of new physics models for low energy electrons in liquid water in Geant4-DNA. Physica Medica, 2016, 32, 1833-1840.	0.7	61
20	Validation of a personalized dosimetric evaluation tool (Oedipe) for targeted radiotherapy based on the Monte Carlo MCNPX code. Physics in Medicine and Biology, 2006, 51, 601-616.	3.0	60
21	Biokinetics and dosimetry of commonly used radiopharmaceuticals in diagnostic nuclear medicine – a review. European Journal of Nuclear Medicine and Molecular Imaging, 2011, 38, 2269-2281.	6.4	58
22	PSMA-Targeted Radionuclide Therapy and Salivary Gland Toxicity: Why Does It Matter?. Journal of Nuclear Medicine, 2018, 59, 747-748.	5.0	58
23	Fractionated ⁹⁰ Y-Ibritumomab Tiuxetan Radioimmunotherapy As an Initial Therapy of Follicular Lymphoma: An International Phase II Study in Patients Requiring Treatment According to GELF/BNLI Criteria. Journal of Clinical Oncology, 2014, 32, 212-218.	1.6	57
24	OpenDose: Open-Access Resource for Nuclear Medicine Dosimetry. Journal of Nuclear Medicine, 2020, 61, 1514-1519.	5.0	54
25	Effect of Patient Morphology on Dosimetric Calculations for Internal Irradiation as Assessed by Comparisons of Monte Carlo Versus Conventional Methodologies. Journal of Nuclear Medicine, 2009, 50, 316-323.	5.0	53
26	Monte Carlo Modeling of Gamma Cameras for I-131 Imaging in Targeted Radiotherapy. Cancer Biotherapy and Radiopharmaceuticals, 2005, 20, 77-84.	1.0	49
27	Dosimetry results suggest feasibility of radioimmunotherapy using anti-CD138 (B-B4) antibody in multiple myeloma patients. Tumor Biology, 2012, 33, 679-688.	1.8	48
28	The conflict between treatment optimization and registration of radiopharmaceuticals with fixed activity posology in oncological nuclear medicine therapy. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44, 1783-1786.	6.4	48
29	Treatment planning in molecular radiotherapy. Zeitschrift Fur Medizinische Physik, 2013, 23, 262-269.	1.5	44
30	Use of the GATE Monte Carlo package for dosimetry applications. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 569, 335-340.	1.6	43
31	OEDIPE: A Personalized Dosimetric Tool Associating Voxel-Based Models with MCNPX. Cancer Biotherapy and Radiopharmaceuticals, 2005, 20, 325-332.	1.0	42
32	Dose point kernels in liquid water: An intra-comparison between GEANT4-DNA and a variety of Monte Carlo codes. Applied Radiation and Isotopes, 2014, 83, 137-141.	1.5	42
33	Clinical radionuclide therapy dosimetry: the quest for the "Holy Gray― European Journal of Nuclear Medicine and Molecular Imaging, 2007, 34, 1699-1700.	6.4	39
34	Simulating radial dose of ion tracks in liquid water simulated with Geant4-DNA: A comparative study. Nuclear Instruments & Methods in Physics Research B, 2014, 333, 92-98.	1.4	38
35	Implementing Dosimetry in GATE: Dose-Point Kernel Validation with GEANT4 4.8.1. Cancer Biotherapy and Radiopharmaceuticals, 2007, 22, 125-129.	1.0	34
36	From fixed activities to personalized treatments in radionuclide therapy: lost in translation?. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45, 152-154.	6.4	34

#	Article	IF	CITATIONS
37	Comparison of commercial dosimetric software platforms in patients treated with ¹⁷⁷ Luâ€DOTATATE for peptide receptor radionuclide therapy. Medical Physics, 2020, 47, 4602-4615.	3.0	34
38	A multicentre and multi-national evaluation of the accuracy of quantitative Lu-177 SPECT/CT imaging performed within the MRTDosimetry project. EJNMMI Physics, 2021, 8, 55.	2.7	34
39	Dosimetry and Microdosimetry of Targeted Radiotherapy. Current Pharmaceutical Design, 2000, 6, 1469-1502.	1.9	33
40	Three methods assessing red marrow dosimetry in lymphoma patients treated with radioimmunotherapy. Cancer, 2010, 116, 1093-1100.	4.1	33
41	Small-Scale Dosimetry: Challenges and Future Directions. Seminars in Nuclear Medicine, 2008, 38, 367-383.	4.6	31
42	Comparison of Electron Dose-Point Kernels in Water Generated by the Monte Carlo Codes, PENELOPE, GEANT4, MCNPX, and ETRAN. Cancer Biotherapy and Radiopharmaceuticals, 2009, 24, 461-467.	1.0	31
43	Implementation of patient dosimetry in the clinical practice after targeted radiotherapy using [177Lu-[DOTA0, Tyr3]-octreotate. EJNMMI Research, 2018, 8, 103.	2.5	31
44	Internal microdosimetry of alpha-emitting radionuclides. Radiation and Environmental Biophysics, 2020, 59, 29-62.	1.4	30
45	Use of multi-cell spheroids of ovarian carcinoma as an intraperitoneal radio-immunotherapy model: Uptake, retention kinetics and dosimetric evaluation. International Journal of Cancer, 1992, 50, 984-991.	5.1	28
46	Apoptosis and p53 are not involved in the anti-tumor efficacy of 125I-labeled monoclonal antibodies targeting the cell membrane. Nuclear Medicine and Biology, 2013, 40, 471-480.	0.6	28
47	Impact of Mouse Model on Preclinical Dosimetry in Targeted Radionuclide Therapy. Proceedings of the IEEE, 2009, 97, 2076-2085.	21.3	27
48	Internal dosimetry with the Monte Carlo code GATE: validation using the ICRP/ICRU female reference computational model. Physics in Medicine and Biology, 2017, 62, 1885-1904.	3.0	27
49	Improved realism of hybrid mouse models may not be sufficient to generate reference dosimetric data. Medical Physics, 2013, 40, 052501.	3.0	26
50	Comparison of Geant4-DNA simulation of S-values with other Monte Carlo codes. Nuclear Instruments & Methods in Physics Research B, 2014, 319, 87-94.	1.4	26
51	Voxelâ€based dosimetry is superior to mean absorbed dose approach for establishing doseâ€effect relationship in targeted radionuclide therapy. Medical Physics, 2019, 46, 5403-5406.	3.0	26
52	Drugs That Modify Cholesterol Metabolism Alter the p38/JNK-Mediated Targeted and Nontargeted Response to Alpha and Auger Radioimmunotherapy. Clinical Cancer Research, 2019, 25, 4775-4790.	7.0	26
53	Evidence of Extranuclear Cell Sensitivity to Alpha-Particle Radiation Using a Microdosimetric Model. I. Presentation and Validation of a Microdosimetric Model. Radiation Research, 2009, 171, 657-663.	1.5	25
54	Evidence of Extranuclear Cell Sensitivity to Alpha-Particle Radiation Using a Microdosimetric Model. II. Application of the Microdosimetric Model to Experimental Results. Radiation Research, 2009, 171, 664-673.	1.5	25

#	Article	IF	CITATIONS
55	Pretargeted radioimmunotherapy of colorectal cancer metastases: models and pharmacokinetics predict influence of the physical and radiochemical properties of the radionuclide. European Journal of Nuclear Medicine and Molecular Imaging, 2011, 38, 2153-2164.	6.4	25
56	Virtual bolus for total body irradiation treated with helical tomotherapy. Journal of Applied Clinical Medical Physics, 2015, 16, 164-176.	1.9	24
57	Clinical implementation of PLANET®ÂDose for dosimetric assessment after [177Lu]Lu-DOTA-TATE: comparison with Dosimetry Toolkit® and OLINDA/EXM® V1.0. EJNMMI Research, 2021, 11, 1.	2.5	24
58	Brief Intraperitoneal Radioimmunotherapy of Small Peritoneal Carcinomatosis Using High Activities of Noninternalizing ¹²⁵ I-Labeled Monoclonal Antibodies. Journal of Nuclear Medicine, 2010, 51, 1748-1755.	5.0	23
59	Implementation of angular response function modeling in SPECT simulations with GATE. Physics in Medicine and Biology, 2010, 55, N253-N266.	3.0	23
60	Modelâ€based versus specific dosimetry in diagnostic context: Comparison of three dosimetric approaches. Medical Physics, 2015, 42, 1288-1296.	3.0	23
61	Setting up a quantitative SPECT imaging network for a European multi-centre dosimetry study of radioiodine treatment for thyroid cancer as part of the MEDIRAD project. EJNMMI Physics, 2020, 7, 61.	2.7	23
62	Correction of count losses due to deadtime on a DST-XLi (SMVi-GE) camera during dosimetric studies in patients injected with iodine-131. Physics in Medicine and Biology, 2002, 47, N79-N90.	3.0	21
63	Voxelâ€based multimodel fitting method for modeling time activity curves in SPECT images. Medical Physics, 2017, 44, 6280-6288.	3.0	19
64	Alpha-Particle Microdosimetry. Current Radiopharmaceuticals, 2011, 4, 266-280.	0.8	19
65	Overview of commercial treatment planning systems for targeted radionuclide therapy. Physica Medica, 2021, 92, 52-61.	0.7	19
66	Bifunctional Antibodies for Radioimmunotherapy. Hybridoma, 1995, 14, 125-128.	0.6	18
67	Clinical outcomes 1 year after empiric 1311 therapy for hyperthyroid disorders. Nuclear Medicine Communications, 2017, 38, 756-763.	1.1	18
68	Pharmacokinetics and biodistribution of samarium-153-labelled OC125 antibody coupled to CITCDTPA in a xenograft model of ovarian cancer. European Journal of Nuclear Medicine and Molecular Imaging, 1996, 23, 560-567.	2.1	17
69	Computational methods in radionuclide dosimetry. Physics in Medicine and Biology, 1996, 41, 1941-1955.	3.0	17
70	Curriculum for education and training of Medical Physicists in Nuclear Medicine. Physica Medica, 2013, 29, 139-162.	0.7	17
71	A simplified approach to beta dosimetry for small spheres labelled on the surface. Physics in Medicine and Biology, 1990, 35, 1039-1050.	3.0	16
72	Optimized radioiodine therapy for Graves?? disease: Two MIRD-based models for the computation of patient-specific therapeutic 1311 activity. Nuclear Medicine Communications, 2006, 27, 559-566.	1.1	16

#	Article	IF	CITATIONS
73	A fast method for rescaling voxel S values for arbitrary voxel sizes in targeted radionuclide therapy from a single Monte Carlo calculation. Medical Physics, 2013, 40, 082502.	3.0	15
74	Realistic multi-cellular dosimetry for ¹⁷⁷ Lu-labelled antibodies: model and application. Physics in Medicine and Biology, 2016, 61, 6935-6952.	3.0	15
75	Monte Carlo dose calculation in presence of low-density media: Application to lung SBRT treated during DIBH. Physica Medica, 2017, 41, 46-52.	0.7	15
76	Low-energy electron dose-point kernel simulations using new physics models implemented in Geant4-DNA. Nuclear Instruments & Methods in Physics Research B, 2017, 398, 13-20.	1.4	15
77	Comparison of technetium-99mC and phytate aerosol in ventilation studies. European Journal of Nuclear Medicine and Molecular Imaging, 1992, 19, 349-54.	2.1	14
78	Application and Dosimetric Requirements for Gallium-68–labeled Somatostatin Analogues in Targeted Radionuclide Therapy for Gastroenteropancreatic Neuroendocrine Tumors. PET Clinics, 2015, 10, 477-486.	3.0	14
79	Accelerated GPU based SPECT Monte Carlo simulations. Physics in Medicine and Biology, 2016, 61, 4001-4018.	3.0	14
80	From the target cell theory to a more integrated view of radiobiology in Targeted radionuclide therapy: The Montpellier group's experience. Nuclear Medicine and Biology, 2022, 104-105, 53-64.	0.6	14
81	Current developments at IRSN on computational tools dedicated to assessing doses for both internal and external exposure. Radiation Protection Dosimetry, 2005, 115, 522-529.	0.8	13
82	Evaluation of [18 F]FNM biodistribution and dosimetry based on whole-body PET imaging of rats. Nuclear Medicine and Biology, 2018, 59, 1-8.	0.6	13
83	Production of new thermoluminescent mini-dosimeters. Physics in Medicine and Biology, 2000, 45, 479-494.	3.0	12
84	The assessment and management of risks associated with exposures to short-range Auger- and beta-emitting radionuclides. State of the art and proposals for lines of research. Journal of Radiological Protection, 2013, 33, R1-R16.	1.1	12
85	TestDose: A nuclear medicine software based on Monte Carlo modeling for generating gamma camera acquisitions and dosimetry. Medical Physics, 2015, 42, 6885-6894.	3.0	12
86	The therapeutic effectiveness of 177Lu-lilotomab in B-cell non-Hodgkin lymphoma involves modulation of G2/M cell cycle arrest. Leukemia, 2020, 34, 1315-1328.	7.2	12
87	99mTcO4â^'-, Auger-Mediated Thyroid Stunning: Dosimetric Requirements and Associated Molecular Events. PLoS ONE, 2014, 9, e92729.	2.5	12
88	MIBG Scintigraphy of a Patient with Pheochromocytoma on Labetalol Therapy. Clinical Nuclear Medicine, 1992, 17, 308-311.	1.3	11
89	Dosimetric comparison of Monte Carlo codes (EGS4, MCNP, MCNPX) considering external and internal exposures of the Zubal phantom to electron and photon sources. Radiation Protection Dosimetry, 2005, 116, 631-635.	0.8	11
90	Complex cell geometry and sources distribution model for Monte Carlo single cell dosimetry with iodine 125 radioimmunotherapy. Nuclear Instruments & Methods in Physics Research B, 2016, 366, 227-233.	1.4	11

#	Article	IF	CITATIONS
91	Comparison of four scatter correction methods for patient whole-body imaging during therapeutic trials with iodine-131. Cancer, 2002, 94, 1224-1230.	4.1	10
92	Optimization of GATE simulations for whole-body planar scintigraphic acquisitions using the XCAT male phantom with 177 Lu-DOTATATE biokinetics in a Siemens Symbia T2. Physica Medica, 2017, 42, 292-297.	0.7	10
93	Biting the magic bullet: celebrating a decade of the EANM Dosimetry Committee. European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41, 1-3.	6.4	9
94	A study of the interplay effect for VMAT SBRT using a fourâ€axes motion phantom. Journal of Applied Clinical Medical Physics, 2020, 21, 208-215.	1.9	9
95	Generation of clinical 177Lu SPECT/CT images based on Monte Carlo simulation with GATE. Physica Medica, 2021, 85, 24-31.	0.7	9
96	Dosimetric Impact of Correcting Count Losses due to Deadtime in Clinical Radioimmunotherapy Trials Involving Iodine-131 Scintigraphy. Cancer Biotherapy and Radiopharmaceuticals, 2003, 18, 117-124.	1.0	8
97	Quantitative imaging for clinical dosimetry. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 569, 467-471.	1.6	8
98	Kinetic Model Analysis for Absorbed Dose Calculation Applied to Brain in [18F]-Fluorodeoxyglucose Positron Emission Tomography Imaging. Cancer Biotherapy and Radiopharmaceuticals, 2010, 25, 665-669.	1.0	8
99	Comparison of Empiric Versus Dosimetry-Guided Radioiodine Therapy: The Devil Is in the Details. Journal of Nuclear Medicine, 2017, 58, 862-862.	5.0	8
100	Feasibility of intratumoral 165Holmium siloxane delivery to induced U87 glioblastoma in a large animal model, the Yucatan minipig. PLoS ONE, 2020, 15, e0234772.	2.5	8
101	Scientific Developments in Imaging and Dosimetry for Molecular Radiotherapy. Clinical Oncology, 2021, 33, 117-124.	1.4	8
102	Impact of Scatter and Attenuation Corrections for Iodine-131 Two-Dimensional Quantitative Imaging in Patients. Cancer Biotherapy and Radiopharmaceuticals, 2003, 18, 191-199.	1.0	7
103	A simplified approach to alpha dosimetry for small spheres labelled on the surface. Physics in Medicine and Biology, 1990, 35, 1551-1561.	3.0	6
104	Cell death induced by a 1311-labeled monoclonal antibody in ovarian cancer multicell spheroids. Nuclear Medicine and Biology, 1996, 23, 623-626.	0.6	6
105	dAcquisition setting optimization and quantitative imaging for 124I studies with the Inveon microPET-CT system. EJNMMI Research, 2012, 2, 7.	2.5	6
106	Radiation dosimetry is a necessary ingredient for a perfectly mixed molecular radiotherapy cocktail. European Journal of Nuclear Medicine and Molecular Imaging, 2012, 39, 548-549.	6.4	6
107	Calculating an estimate of tissue integrated activity in 18F-FDG PET imaging using one SUV value. EJNMMI Research, 2013, 3, 26.	2.5	6
108	Hybrid MicroPET Imaging for Dosimetric Applications in Mice: Improvement of Activity Quantification in Dynamic MicroPET Imaging for Accelerated Dosimetry Applied to 6-[18 F]Fluoro-l-DOPA and 2-[18 F]Fluoro-l-Tyrosine. Molecular Imaging and Biology, 2014, 16, 383-394.	2.6	6

#	Article	IF	CITATIONS
109	Technical note: GAMMORA, a free, open-source, and validated GATE-based model for Monte-Carlo simulations of the Varian TrueBeam. Physica Medica, 2021, 89, 211-218.	0.7	6
110	New thermoluminescent dosimeters (TLD): optimization and characterization of TLD threads sterilizable by autoclave. Physics in Medicine and Biology, 2004, 49, 1803-1815.	3.0	5
111	Defining the role for dosimetry and radiobiology in combination therapies. European Journal of Nuclear Medicine and Molecular Imaging, 2013, 40, 4-5.	6.4	5
112	Nonlinearity in MCF7 Cell Survival Following Exposure to Modulated 6 MV Radiation Fields. Dose-Response, 2015, 13, 155932581561075.	1.6	5
113	Monte Carlo dosimetry of a realistic multicellular model of follicular lymphoma in a context of radioimmunotherapy. Medical Physics, 2020, 47, 5222-5234.	3.0	5
114	Dosimetry is Alive and Well. Cancer Biotherapy and Radiopharmaceuticals, 2010, 25, 593-595.	1.0	4
115	Brief progress report from the intersocietal working group on differentiated thyroid cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 1345-1347.	6.4	4
116	[1311]-TYR3-octreotide: clinical dosimetry and use for internal radiotherapy of metastatic paraganglioma and carcinoid tumors. Nuclear Medicine and Biology, 2000, 27, 809-813.	0.6	3
117	RTNCAT (Real Time NCAT): Implementing Real Time physiological movement of voxellized phantoms in GATE. , 2006, , .		3
118	Implementation of a Microdosimetric Model for Radioimmunotherapeutic Alpha Emitters. Cancer Biotherapy and Radiopharmaceuticals, 2007, 22, 387-392.	1.0	3
119	Tandem myeloablative131I-rituximab radioimmunotherapy and high-dose chemotherapy in refractory/relapsed non-Hodgkin lymphoma patients. Immunotherapy, 2013, 5, 1283-1286.	2.0	3
120	Multi-scale hybrid models for radiopharmaceutical dosimetry with Geant4. Physics in Medicine and Biology, 2014, 59, 7625-7641.	3.0	3
121	OSSI-PET: Open-Access Database of Simulated <formula formulatype="inline"> <tex Notation="TeX">\$[^{11}{m C]Raclopride}\$ </tex </formula> Scans for the Inveon Preclinical PET Scanner: Application to the Optimization of Reconstruction Methods for Dynamic Studies. IEEE Transactions on Medical Imaging, 2016, 35, 1696-1706.	8.9	3
122	Abstract ID: 155 OpenDose: A collaborative effort to produce reference dosimetric data with Monte Carlo simulation software. Physica Medica, 2017, 42, 32-33.	0.7	3
123	Enabling Large Scale Data Production for OpenDose with GATE on the EGI Infrastructure. , 2019, , .		3
124	A study of the interplay effect in radiation therapy using a Monte-Carlo model. Physica Medica, 2021, 87, 73-82.	0.7	3
125	Efficient simulations of iodine 131 SPECT scans using GATE. , 2009, , .		2

126 TestDose: a SPECT image generator for clinical dosimetry studies. , 2013, , .

2

#	Article	IF	CITATIONS
127	Which impact of tumor density variations on absorbed dose in external radiotherapy. Physica Medica, 2016, 32, 301.	0.7	2
128	[OA085] CT Quantification of holmium distribution for absorbed dose calculation in a context of microbrachytherapy. Physica Medica, 2018, 52, 33-34.	0.7	2
129	Dosimetry and Toxicity Studies of the Novel Sulfonamide Derivative of Sulforhodamine 101([18F]SRF101) at a Preclinical Level. Current Radiopharmaceuticals, 2019, 12, 40-48.	0.8	2
130	COMPUTER TIME (CPU) COMPARISON OF SEVERAL INPUT FILE FORMATS CONSIDERING DIFFERENT VERSIONS OF MCNPX IN CASE OF PERSPONALISED VOXEL-BASED DOSIMETRY. , 2006, , .		2
131	Dose point-kernels for radionuclide dosimetry. , 2002, , 158-174.		2
132	Modelling SPECT auto-contouring acquisitions for 177Lu & 1311 molecular radiotherapy using new developments in Geant4/GATE. Physica Medica, 2022, 96, 101-113.	0.7	2
133	Monte Carlo Methods in Nuclear Medicine. Medical Radiology, 2012, , 759-768.	0.1	1
134	Generation of whole-body scintigraphic images with new GATE output capacities. , 2013, , .		1
135	[1066] EFOMP guidelines on the transposition of EU BSS art.60 in national legislations. Physica Medica, 2018, 52, 26.	0.7	1
136	Relevance and implementation of patient-specific dosimetry in targeted radionuclide therapy. BIO Web of Conferences, 2019, 14, 07001.	0.2	1
137	Dosimetric methodology for 1311 therapy for benign thyroid diseases. Medecine Nucleaire, 2020, 44, 261-266.	0.2	1
138	Biological and dosimetric evaluation of [11C]S-adenosyl Methionine as a potential agent for prostate cancer diagnosis. Cancer Research Frontiers, 2018, 4, 27-44.	0.2	1
139	A semantic database for integrated management of image and dosimetric data in low radiation dose research in medical imaging. AMIA Annual Symposium proceedings, 2020, 2020, 492-501.	0.2	1
140	Pre-clinical and clinical studies of two new bifunctional chelating agents for immunoscintigraphy with 111In-anti-CEA monoclonal antibody. Nuclear Medicine Communications, 1996, 17, 781-789.	1.1	0
141	Implementation of cluster analysis in 3D dosimetry for targeted radionuclide therapy. , 2008, , .		0
142	SMALL SCALE DOSIMETRY IN NUCLEAR MEDICINE. Radiotherapy and Oncology, 2009, 92, S59-S60.	0.6	0
143	R112: Traitement des carcinoses péritonéales de petite taille par radioimmunothérapie Auger flash. Bulletin Du Cancer, 2010, 97, S59.	1.6	0
144	EFOMP and EANM: joint recommendations for a curriculum for the education and training of physicists in nuclear medicine. European Journal of Nuclear Medicine and Molecular Imaging, 2013, 40, 645-648.	6.4	0

#	Article	IF	CITATIONS
145	Radiopharmaceutical dosimetry: from the animals to the clinics. Physica Medica, 2014, 30, e9.	0.7	0
146	Small scale radiopharmaceutical dosimetry. Physica Medica, 2016, 32, 169.	0.7	0
147	Monte-Carlo dose computation in radiotherapy for lung at very low density. Physica Medica, 2016, 32, 245-246.	0.7	Ο
148	Patient-specific dosimetry in molecular radiotherapy: Why and how?. Physica Medica, 2016, 32, 193.	0.7	0
149	PV-0183: Microbrachytherapy: even more localised dose profiles?. Radiotherapy and Oncology, 2017, 123, S93-S94.	0.6	Ο
150	An innovative in vitro device providing continuous low doses of Î ³ -rays mimicking exposure to the space environment: A dosimetric study. Life Sciences in Space Research, 2018, 16, 38-46.	2.3	0
151	[1182] Dosimetry in radiopharmaceutical therapy. Physica Medica, 2018, 52, 70.	0.7	Ο
152	EP-1788 Dose distribution for electron beam using Monte Carlo simulation with GATE. Radiotherapy and Oncology, 2019, 133, S967-S968.	0.6	0
153	Whole body planar and 3D quantitative imaging after Lu-DOTATATE on CZT SPECT/CT device with MEHRS collimator. First report. Hellenic Journal of Nuclear Medicine, 2021, 24, 165-166.	0.3	0