Xiaoyu Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3241024/publications.pdf Version: 2024-02-01

Χιλογιι Ιμνις

#	Article	IF	CITATIONS
1	Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries. Nature Energy, 2018, 3, 674-681.	39.5	557
2	TiO2 ceramic-grafted polyethylene separators for enhanced thermostability and electrochemical performance of lithium-ion batteries. Journal of Membrane Science, 2016, 504, 97-103.	8.2	161
3	Stable Li Metal Anode with "Ion–Solvent-Coordinated―Nonflammable Electrolyte for Safe Li Metal Batteries. ACS Energy Letters, 2019, 4, 483-488.	17.4	148
4	A Highly Thermostable Ceramic-Grafted Microporous Polyethylene Separator for Safer Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 24119-24126.	8.0	119
5	A Safer Sodiumâ€lon Battery Based on Nonflammable Organic Phosphate Electrolyte. Advanced Science, 2016, 3, 1600066.	11.2	116
6	Novel Ceramic-Grafted Separator with Highly Thermal Stability for Safe Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 25970-25975.	8.0	100
7	Safer lithium ion batteries based on nonflammable electrolyte. Journal of Power Sources, 2015, 279, 6-12.	7.8	93
8	A Nonflammable Na ⁺ â€Based Dualâ€Carbon Battery with Lowâ€Cost, High Voltage, and Long Cycle Life. Advanced Energy Materials, 2018, 8, 1802176.	19.5	90
9	Enabling an intrinsically safe and highâ€energyâ€density 4.5 Vâ€elass Liâ€ion battery with nonflammable electrolyte. InformaÄnÄ-Materiály, 2020, 2, 984-992.	17.3	81
10	A novel bifunctional thermo-sensitive poly(lactic acid)@poly(butylene succinate) core–shell fibrous separator prepared by a coaxial electrospinning route for safe lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 23238-23242.	10.3	70
11	A green route to synthesize low-cost and high-performance hard carbon as promising sodium-ion battery anodes from sorghum stalk waste. Green Energy and Environment, 2017, 2, 310-315.	8.7	63
12	Electrolytes for Dualâ€Carbon Batteries. ChemElectroChem, 2019, 6, 2615-2629.	3.4	59
13	Novel 2D Layered Molybdenum Ditelluride Encapsulated in Few‣ayer Graphene as Highâ€Performance Anode for Lithium″on Batteries. Small, 2018, 14, e1703680.	10.0	52
14	High Capacity and Cycle-Stable Hard Carbon Anode for Nonflammable Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 38141-38150.	8.0	51
15	Advancing knowledge of electrochemically generated lithium microstructure and performance decay of lithium ion battery by synchrotron X-ray tomography. Materials Today, 2019, 27, 21-32.	14.2	47
16	Bis(2,2,2-trifluoroethyl) methylphosphonate: An Novel Flame-retardant Additive for Safe Lithium-ion Battery. Electrochimica Acta, 2014, 129, 300-304.	5.2	46
17	A Bifunctional Fluorophosphate Electrolyte for Safer Sodium-Ion Batteries. IScience, 2018, 10, 114-122.	4.1	43
18	Hollow CuO nanoparticles in carbon microspheres prepared from cellulose-cuprammonium solution as anode materials for Li-ion batteries. Chemical Engineering Journal, 2020, 381, 122614.	12.7	43

XIAOYU JIANG

#	Article	IF	CITATIONS
19	All solid thick oxide cathodes based on low temperature sintering for high energy solid batteries. Energy and Environmental Science, 2021, 14, 5044-5056.	30.8	41
20	Enhanced electrochemical performance of Mg-doped LiCoO2 synthesized by a polymer-pyrolysis method. Ceramics International, 2014, 40, 11245-11249.	4.8	40
21	High-Safety Symmetric Sodium-Ion Batteries Based on Nonflammable Phosphate Electrolyte and Double Na ₃ V ₂ (PO ₄) ₃ Electrodes. ACS Applied Materials & Interfaces, 2019, 11, 27833-27838.	8.0	40
22	Fe 2 O 3 amorphous nanoparticles/graphene composite as high-performance anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2017, 711, 15-21.	5.5	39
23	Bis(2,2,2-Trifluoroethyl) Ethylphosphonate as Novel High-efficient Flame Retardant Additive for Safer Lithium-ion Battery. Electrochimica Acta, 2015, 165, 67-71.	5.2	38
24	Amorphous CoS nanoparticle/reduced graphene oxide composite as high-performance anode material for sodium-ion batteries. Ceramics International, 2017, 43, 9630-9635.	4.8	37
25	An All-Phosphate and Zero-Strain Sodium-Ion Battery Based on Na ₃ V ₂ (PO ₄) ₃ Cathode, NaTi ₂ (PO ₄) ₃ Anode, and Trimethyl Phosphate Electrolyte with Intrinsic Safety and Long Lifespan, ACS Applied Materials & amp: Interfaces, 2017, 9, 43733-43738.	8.0	36
26	Nanospherical-Like Manganese Monoxide/Reduced Graphene Oxide Composite Synthesized by Electron Beam Radiation as Anode Material for High-Performance Lithium-Ion Batteries. Electrochimica Acta, 2016, 196, 431-439.	5.2	34
27	Polyaniline hollow nanofibers prepared by controllable sacrifice-template route as high-performance cathode materials for sodium-ion batteries. Electrochimica Acta, 2019, 301, 352-358.	5.2	32
28	Nanophase ZnV2O4 as stable and high capacity Li insertion electrode for Li-ion battery. Current Applied Physics, 2015, 15, 435-440.	2.4	20
29	Systematic Evaluation of Carbon Hosts for High-Energy Rechargeable Lithium-Metal Batteries. ACS Energy Letters, 0, , 1550-1559.	17.4	20
30	Enhanced Cycling Stability of Sulfur Cathode Surface-Modified by Poly(N-methylpyrrole). Electrochimica Acta, 2014, 135, 108-113.	5.2	13
31	A controllable thermal-sensitivity separator with an organic–inorganic hybrid interlayer for high-safety lithium-ion batteries. Materials Chemistry Frontiers, 2021, 5, 2313-2319.	5.9	10
32	SnO2-Reduced Graphene Oxide Nanocomposites via Microwave Route as Anode for Sodium-Ion Battery. Jom, 2016, 68, 2607-2612.	1.9	9
33	Electrochemical properties of stacked-nanoflake Li4Ti5O12 spinel synthesized by a polymer-pyrolysis method. Current Applied Physics, 2014, 14, 586-589.	2.4	2